
ibm.com/redbooks

Securing NFS in AIXIX
An Introduction to NFS V4 in AIX 5L
Version 5.3

Chris Almond
Lutz Denefleh

Sridhar Murthy
Aniket Patel
John Trindle

Set up and administer NFS V4 on your
systems

Command use changes and
other differences since V3

Learn to use NFS V4 in a
clustered environment

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Securing NFS in AIX

November 2004

International Technical Support Organization

SG24-7204-00

© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (November 2004)

This edition applies to NFS Volume 4 running on AIX 5L.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xiii
Acknowledgements . xiv
Become a published author . xv
Comments welcome. xv

Part 1. NFS V4 fundamentals . 1

Chapter 1. NFS Version 4 overview . 3
1.1 What is NFS? . 4
1.2 NFS V2 and NFS V3 History . 4
1.3 NFS V4 design motivations . 5
1.4 Objectives of NFS V4 (RFC3530) . 5
1.5 AIX 5.3 specific implementation of NFS V4. 6

1.5.1 Mandatory features . 6
1.5.2 Optional features. 7

1.6 Planning and implementation considerations . 7
1.6.1 Pre-implementation design considerations . 7

1.7 Looking ahead to the rest of the book . 8

Chapter 2. What’s new in NFS V4? . 11
2.1 How NFS works. 12
2.2 Protocols used by NFS . 12

2.2.1 UDP or TCP . 13
2.2.2 Remote Procedure Call (RPC) . 14
2.2.3 eXternal Data Representation (XDR) . 14

2.3 NFS daemons . 14
2.3.1 The portmap daemon . 15
2.3.2 The rpc.mountd daemon . 16
2.3.3 The rpc.statd daemon . 16
2.3.4 The rpc.lockd daemon. 16
2.3.5 The nfsd daemon . 16
2.3.6 The block I/O daemon (biod). 17

2.4 NFS V3 . 17
2.5 The NFS Lock Manager protocol . 19
2.6 NFS V4 . 20
© Copyright IBM Corp. 2004. All rights reserved. iii

2.6.1 Attribute classes . 20
2.6.2 Username to UID mapping . 24
2.6.3 Better namespace handling . 25
2.6.4 Built-in security . 27
2.6.5 Client-side caching and delegation . 28
2.6.6 Compound RPC procedures . 29
2.6.7 File locking . 29
2.6.8 Internationalization . 30
2.6.9 Volatile file handles . 30

2.7 AIX 5L v5.3 implementation of NFS V4. 30
2.8 NFS V4 supported features in AIX 5.3 . 31

2.8.1 Mandatory feature support . 31
2.8.2 Other unsupported features . 32
2.8.3 Optional feature support . 32
2.8.4 NFS4 ACL . 32
2.8.5 AIXC ACLs . 33
2.8.6 External name space (exname) . 34
2.8.7 Protocol differences: server exporting and client mounting 35
2.8.8 NFS files . 36
2.8.9 Restricting NFS port ranges . 41
2.8.10 Use of NFS_NOBODY . 41

2.9 NFS daemons, files, and commands: a quick reference. 41

Chapter 3. Enhanced security in NFS V4 . 45
3.1 General security concepts and terminology . 46

3.1.1 Broad security categories . 46
3.1.2 Information security components . 46
3.1.3 RPC security flavors . 47
3.1.4 RPCSEC_GSS protection levels. 47
3.1.5 RPCSEC_GSS protection mechanisms . 47
3.1.6 Looking ahead to the rest of the chapter. 48

3.2 NFS V4 user/group identification. 48
3.2.1 User identity management options . 48
3.2.2 User/group identities and NFS V4. 50

3.3 NFS V4 user authentication . 59
3.3.1 AUTH_SYS user authentication . 59
3.3.2 RPCSEC_GSS user authentication using Kerberos 59

3.4 NFS V4 user authorization . 62
3.4.1 Standard UNIX file permissions . 63
3.4.2 AIXC ACLs . 63
3.4.3 NFS V4 ACLs: description . 65
3.4.4 NFS V4 ACLs: ACL evaluation . 69
3.4.5 NFS V4 ACLs: administration . 72
iv Securing NFS in AIX

3.4.6 NFS V4 ACLs: permissions scenarios . 85
3.4.7 NFS V4 ACLs: NFS V3 clients . 87

3.5 NFS V4 host identification . 87
3.5.1 Basic host identification. 87
3.5.2 Kerberos host identification. 88

3.6 NFS V4 host authentication. 88
3.7 NFS V4 host authorization . 88

Part 2. Implementing NFS V4 . 91

Chapter 4. Planning for NFS V4 . 93
4.1 Deployment of NFS V4 in general. 95
4.2 Mandatory requirements . 97

4.2.1 What is your name resolution type? . 97
4.2.2 Choosing your NFS domain . 98

4.3 Identification methods . 99
4.3.1 Selecting the user/group repository . 100
4.3.2 Other identification considerations . 101

4.4 NFS Authentication methods. 102
4.4.1 AUTH_SYS method . 102
4.4.2 Deploying Kerberos. 102
4.4.3 Default types of encryption for KDC and security flavors 107
4.4.4 NFS client considerations when using Kerberos. 108
4.4.5 Deployment of LDAP. 109

4.5 Authorization methods. 110
4.5.1 Choosing your user authorization method 110
4.5.2 Other user authorization considerations . 111

4.6 Choosing the appropriate file system types . 111
4.7 NFS protocols and namespace considerations. 112

4.7.1 Pseudo-root FS - alias tree versus classic model 115
4.8 Sizing and capacity planning considerations. 115
4.9 Migration considerations . 116

Chapter 5. Sample implementation scenarios . 119
5.1 Setup of the sample environment . 121

5.1.1 PATH variable for NAS deployment . 121
5.1.2 syslogd settings. 121

5.2 Using NFS V4 as you did with NFS V3 . 122
5.3 How to unmount an exported NFS V4 file system. 123
5.4 Setting up the NFS domain name . 124
5.5 The pseudo-root FS . 124

5.5.1 Setting up the pseudo-root FS on an NFS V4 server 125
5.5.2 Advantages of using the NFS V4 pseudo-root 128
5.5.3 Setting up the alias tree extension on an NFS V4 server 131
 Contents v

5.6 Setting up the NAS with a legacy database . 134
5.6.1 Setup of a KDC server . 135
5.6.2 Installing the IBM NAS file sets . 135
5.6.3 Initial basic KDC functions test . 138
5.6.4 Create user principals on the KDC server. 139
5.6.5 Create the NFS server principals on the KDC server 141

5.7 Setting up an NFS V4 server with NAS on a different KDC server 142
5.7.1 Create the NFS server keytab file entry . 142
5.7.2 Check the NFS V4 server before client access. 143
5.7.3 Set up the NFS registry daemon. 143
5.7.4 Set up the gssd daemon on the NFS V4 server 144

5.8 Setting up an NFS V4 client with NAS . 145
5.8.1 General steps for all types of clients . 145
5.8.2 Install the NAS client code . 145
5.8.3 Set up the NFS domain. 146
5.8.4 Set up the NFS domain-to-realm map . 146
5.8.5 Full client installation steps . 147
5.8.6 Slim client installation steps . 150
5.8.7 Configuring RPCSEC_GSS on the clients 154

5.9 Preparing the system for Tivoli Directory Server and Kerberos V5. 155
5.9.1 Set up procedure. 156
5.9.2 Configure IBM Tivoli Directory Server . 160
5.9.3 Configure the KDC server with LDAP backend. 165
5.9.4 Configure the NFS V4 client for integrated login services. 170

5.10 Integrating NFS V4 with a Linux client . 176
5.10.1 NFS server and client setup . 177
5.10.2 Read-only NFS V4 mount . 182
5.10.3 Read/write NFS V4 mounts on Linux . 185
5.10.4 Pseudo-file system in NFS V4 Linux client 187

5.11 Windows KDC and NFS V4 AIX 5.3 . 190
5.12 Setting up Kerberos cross-realm access. 199

5.12.1 Add the krbtgt service principal to every KDC server 200
5.12.2 Kerberos configuration file changes on the KDC server, NFS V4 client

and server. 203
5.12.3 Add NFS domain-to-realm map on NFS V4 client and server . . . 204
5.12.4 Client access verification. 204
5.12.5 Client access mount using cross-realms. 205

Chapter 6. Problem determination. 207
6.1 Problem determination tools and techniques . 208
6.2 AIX problem determination tools and aids for NFS 208

6.2.1 Enabling syslogd . 208
6.2.2 Using iptrace and ipreport . 210
vi Securing NFS in AIX

6.2.3 Using the fuser command . 210
6.2.4 Using the rpcinfo command . 210
6.2.5 Using the showmount command. 211
6.2.6 Using the nfs4cl command . 211
6.2.7 Using the nfsstat command. 211
6.2.8 Using the errpt command . 211

6.3 IBM NAS problem determination tools . 211
6.4 Tivoli Directory Server problem determination tools 212
6.5 Third-party problem determination tools . 212

6.5.1 Using the lsof command . 212
6.5.2 Using the Ethereal utility . 212

6.6 General NFS V4 problems . 213
6.6.1 Warning: EIM is not configured . 213
6.6.2 Realm is already mapped to domain. 214

6.7 Exporting file systems . 215
6.7.1 Exportfs: cannot change the v4 root... . 215
6.7.2 Exportfs: /<path>: Invalid argument . 215
6.7.3 Exportfs: /var/<logfile>: Too many levels of symbolic links... 217

6.8 Mount problems. 218
6.8.1 General mount problem . 218
6.8.2 Pseudo-root and nfs4cl problems . 219
6.8.3 ‘vers’ mount option error: “...Program not registered” 219
6.8.4 ‘vers’ mount option error: “...server <name> not responding” 220
6.8.5 Mount command hangs - no system response 220
6.8.6 Mount with sec=krb5: “vmount: The file access permissions do not allow

the specified action” . 221
6.8.7 Mount with sec=krb5: “RPC: 1832-016 Unknown host...” 223
6.8.8 File and directory access: cd, ls, etc. return “permission denied” . . 226
6.8.9 File and directory access: file ownership is “nobody:nobody”. 229
6.8.10 NAS problem: kadmin: “Unable to initialize kadmin interface” . . . 231

6.9 GSS-API error codes. 232
6.9.1 Major GSS-API error codes . 232
6.9.2 Kerberos v5 status codes . 234

Part 3. Appendixes . 241

Appendix A. Kerberos . 243
Overview . 244
Kerberos keys and initial setup . 245
Authenticating to the Kerberos server . 246
Authenticating to an application server . 247
Kerberos terminology . 251
Where to find more information about Kerberos . 252
 Contents vii

IBM Redbooks. 252
Other IBM publications . 252
Non-IBM publications . 253
Other information sources. 253

Appendix B. Sample scripts, files, and output . 255
Sample administrative scripts. 256

Change the pseudo-root FS sample script . 256
Create a KDC server with NFS V4 server. 256
Create a full client with legacy KDC server backend 258
Create a Full Client with KDC and LDAP backend 259
Script to copy ACLs to an entire directory structure 260
Windows command script to run ktpass . 262
Script to gather additional information for local AIX software support. . . . 263

Sample client Kerberos configuration files . 268
Kerberos configuration file /etc/krb5/krb5.conf with legacy backend 268
Kerberos configuration file /etc/krb5/krb5.conf with LDAP backend 269
Kerberos configuration file /etc/krb5/krb5.conf with Windows Active Directory

backend. 269
LDIF sample file for KDC . 270

Sample iptrace output . 271
Successful authentication during mount request 271
Unsuccessful authentication during mount request 281

Appendix C. AIX 5.3 NFS quick reference. 287
NFS configuration files . 288
NFS daemons . 290
NFS commands . 291
Export options . 293
mount command options . 294
nfso command options . 295

Abbreviations and acronyms . 297

Glossary . 299

Related publications . 301
IBM Redbooks . 301
Other publications . 301
Online resources . 302
How to get IBM Redbooks . 302
Help from IBM . 303

Index . 305
viii Securing NFS in AIX

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2004. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AFS®
AIX®
AIX 5L™
Domino®
DB2®
DFS™
DYNIX/ptx®

IBM®
iSeries™
Lotus®
MQSeries®
Notes®
OS/2®
POWERparallel®

pSeries®
Redbooks™
Redbooks (logo) ™
RS/6000®
Tivoli®
WebSphere®

The following terms are trademarks of other companies:

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
x Securing NFS in AIX

Preface

Network File System Version 4 (NFS V4) is the latest defined client-to-server
protocol for NFS. A significant upgrade of NFS V3, it was defined under the IETF
framework by many contributors. NFS V4 introduces a major changes to the way
NFS has been implemented and used up until now, including stronger security,
wide area network sharing, and broader platform adaptability.

This IBM® Redbook is intended to provide a broad understanding of NFS V4 and
specific AIX® NFS V4 implementation details. It discusses considerations for
deployment of NFS V4, with a focus on exploiting the stronger security features
of the new protocol.

In the initial implementation of NFS V4 in AIX 5.3, the most important functional
differences are related to security. Chapter 3 and parts of the planning and
implementation chapters in Part 2 cover this topic in detail.

Part 1 NFS V4 Fundamentals
Chapter 1. NFS Version 4 overview

This chapter provides a high-level discussion defining NFS, the evolution
of the protocol, design motivations for NFS V4, features implemented in
AIX 5.3, and an overview of planning and implementation design
decisions.

Read this chapter for an introduction to Version 4 protocol design
requirements. It includes an important section that introduces the planning
and implementation design decisions necessary for successful
deployment.

Chapter 2. What’s new in NFS V4?

This chapter provides a more detailed analysis of the differences between
NFS V4 and prior versions. Name space handling and psuedo file systems
are discussed in detail. It also provides reference information
demonstrating differences in supporting files and daemons.

Read the first part of the chapter for more detailed information on the NFS
protocol design and evolution from Version 2 to Version 4. In later parts of
the chapter, learn specific technical differences in the implementation of
NFS V4.

Chapter 3. Enhanced security in NFS V4

This chapter provides a deep dive into the enhanced security features
available in NFS V4.
© Copyright IBM Corp. 2004. All rights reserved. xi

Read this chapter for details on integration options to support
identification, authentication, and authorization of users and hosts in an
NFS V4 environment. Very important differences between standard
UNIX® permissions and the new NFS V4 access control lists (ACLs) are
described and demonstrated with sample scenarios. Discussion of ACL
management and ACL inheritance strategies is also included.

Part 2 Implementing NFS V4
Chapter 4. Planning for NFS V4

This chapter analyzes the deployment planning challenges for NFS V4
and provides some decision support tools for the system architect
responsible for this task.

Read this chapter to learn methods for planning a deployment. There are
useful tools (decision tree flow charts, sample before and after migration
scenarios) that should help the system designer to understand how to
map the NFS V4 migration challenges to their own environment.

Chapter 5. Sample implementation scenarios

This chapter documents actual sample installation, implementation, and
deployment tasks carried out to support the various NFS V4 configurations
tested as part of the development process for this book.

Refer to this chapter for how-to examples showing NFS V4 setup. See the
beginning of the chapter for a more detailed list of documented
configurations.

Chapter 6. Problem determination

This chapter begins by describing some best-practice setup and
configuration methods for capturing information in case you need to debug
error conditions when deploying NFS V4. Also included are some actual
error conditions and the information-gathering methods that led to
solutions for those conditions.

Read the beginning of this chapter for useful tips on configuring NSFv4
test systems. The latter part of the chapter could help you find solutions to
error conditions you may encounter.

Part 3 Appendices

Appendix A. Kerberos

This appendix provides detailed backgound information on the inner
workings of the Kerberos authentication system.
xii Securing NFS in AIX

Appendix B. Sample scripts, files, and output

This appendix contains sample administration scripts for automating NFS
V4 setup and configuration, sample configuration files, and sample
IPTrace output streams.

Appendix C. AIX 5.3 NFS quick reference

This appendix provides a quick reference to NFS. It includes
comprehensive lists of NFS-related configuration files, system daemons,
commands, exporting options, mount options, and nfso options.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Chris Almond is an ITSO Project Leader and IT Architect based in Austin,
Texas. He has a total of 14 years of IT industry experience, including the past
five with IBM. His experience includes UNIX/Linux® systems engineering,
network engineering, Lotus® Domino®–based content management solutions,
and WebSphere® Portal–based solution design.

Lutz Denefleh is a team leader at the PLM Technical Support Eastern Region
Support Center in Mainz, Germany. He holds a Graduate Engineer degree in
Fluid Dynamics. He has 16 years of experience in the Information Technology
field and has worked at IBM for 15 years. His areas of expertise include solution
implementations on RS/6000®, such as CATIA, Lotus Notes®/Domino, Tivoli®,
DCE/DFS™, and Internet technologies. He is now responsible for the IBM
internal infrastructure used by the PLM World Wide Technical Support.

Sridhar Murthy works for IBM as an IT Specialist in Dallas, Texas. He has 15
years of experience in the IT industry. He holds a Master’s degree in Computer
Science and a Bachelors’ degree in Electrical Engineering. He is also an AIX
Certified Advanced Technical Expert. His areas of expertise include solution
implementations using Distributed Computing Environment (DCE), Distributed
File System (DFS), Domino Servers, Tivoli Netview, and Network Authentication
Service on AIX. He is currently evaluating methods for designing an architecture
that will support migration of a 40,000+ user DEC/DFS environment to NFS V4.

Aniket Patel is a Team Leader at the IBM UK UNIX Support Centre. He has
eight years of experience in UNIX and has worked at IBM for six years. Aniket
graduated from Kingston University, UK, with a Bachelor of Science (Honours
Degree) in Computer Science. His areas of expertise include UNIX Support on
AIX, DYNIX/ptx®, and Linux, NFS, TCP/IP, SNA, X.25, DCE, Sendmail,
MQSeries®, and the Microsoft® Windows® operating systems. Prior to recently
 Preface xiii

taking on the role of Team Leader, Aniket was responsible for a team of Network
Specialists within the IBM UK UNIX Support Centre.

John Trindle works for Boeing in Seattle, Washington, as a systems design and
integration specialist. He has worked with NFS on various UNIX systems
(including SunOS/Solaris, DEC Ultrix, HP-UX, and most recently AIX) for 18
years. He holds a Bachelor of Science degree in General Engineering from the
United Stated Military Academy, West Point, NY. His current areas of expertise
include the AIX operating system and storage integration with AIX. He also
designs and oversees several hierarchical storage management implementations
using IBM Tivoli Storage Manager for Space Management.

Acknowledgements
The following people provided significant support for this project:

Carl Burnett, IBM AIX Kernel Architecture Team: for his thoughtful insights and
overall guidance in helping us develop a content strategy for this book.

Ufuk Celikka, IBM AIX Security Development Team: for technical support during
NFS V4 testing.

Bill McAllister, Team Leader IBM UK UNIX Support Centre: for his support in
reviewing draft content and providing feedback during the project.

Brian L. McCorkle, IBM AIX NFS Development Team: for his continued patience
and assistance while we tried to understand the implementation of NFS V4 on
AIX. Brian’s support enabled the team to meet its content goals for the book.

Dave Sheffield, Team Leader IBM AIX NFS Development Team: for facilitating
access to Development Team resources whenever we needed it.

Steve Sipocz, IBM BCS Systems Integration Services: for technical support and
review of our integration scenarios.

Betsy Thaggard
ITSO Editor, Austin Center

And other members of the AIX NFS Development Team and the AIX NAS
Development Team, for fheir support on various technical issues.
xiv Securing NFS in AIX

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You’ll team with IBM technical professionals,
Business Partners, and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you’ll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us because we want our Redbooks™ to be as
helpful as possible. Send us your comments about this or other Redbooks in one
of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 905 3D004
11501 Burnet Road
Austin, Texas 78758-3493
 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xvi Securing NFS in AIX

Part 1 NFS V4
fundamentals

Part 1
© Copyright IBM Corp. 2004. All rights reserved. 1

2 Securing NFS in AIX

Chapter 1. NFS Version 4 overview

The purpose of this chapter is to give a general overview of the Network File
System (NFS) protocol, from NFS V1 to NFS V4.

We give you an introduction to the NFS protocol, beginning with a look at how
NFS works. We then move on to a brief history of NFS followed by NFS V4. We
also introduce you to some of the AIX 5.3 implementation specifics of NFS V4.

The following topics are discussed in this chapter:

� What is NFS?

� NFS V2 and NFS V3 history

� NFS V4 design motivations

� Objectives of NFS V4 (RFC3530)

� AIX 5.3 specific implementation of NFS V4

� Planning and implementation considerations

1

© Copyright IBM Corp. 2004. All rights reserved. 3

1.1 What is NFS?
In many environments, we would like to share files and programs among
workstations in a local area network (LAN). Doing so requires programs that let
us share these files, create new ones, carry out file locking, and manage
ownership correctly.

Over the past few years there have been developments in multiple types of
network capable file systems. These include the Apollo Domain, the Andrew File
System (AFS®), the AT&T Remote File System (RFS), IBM DFS, and Sun
Microsystems’ Network File System (NFS). Each of these has had beneficial
features and limiting drawbacks.

Of all the network file systems, NFS is probably the most widely used. NFS is
available on almost all versions of UNIX, as well as on Apple Macintosh systems,
MS-DOS, Windows, OS/2®, and VMS. It has continued to mature, and the latest
revision, Version 4, will help to advance and expand its reach.

So, what is NFS? NFS is a distributed file system that enables users to access
files and directories on remote servers as if they were local. For example, the
user can use operating system commands to create, remove, read, write, and set
file attributes for remote files and directories. NFS is independent of machine
types, operating systems, and network architectures through the use of Remote
Procedure Calls (RPCs).

NFS operates on a client/server basis. An NFS server has files on a local disk,
which are accessed through NFS on a client machine. To handle these
operations, NFS consists of:

� Networking protocols
� Client and server daemons
� Kernel extensions

The kernel extensions are outside the scope of this book, but the protocols,
daemons, planning, and implementation of NFS V4 will be discussed.

1.2 NFS V2 and NFS V3 History
NFS was first introduced by Sun Microsystems in the early 1980s.

NFS V1 was Sun’s prototype version and was never released for public use.

NFS V2 was released in 1985 with the SunOS V2 operating system. Many UNIX
vendors licensed this version of NFS from Sun. NFS V2 suffered many
undocumented and subtle changes throughout its 10-year life. Some vendors
4 Securing NFS in AIX

allowed NFS V2 to read or write more than 4 K bytes at a time; others increased
the number of groups provided as part of the RPC authentication from 8 to 16.
These minor changes created occasional incompatibilities between different NFS
implementations; however, the protocol continued to provide an exceptional
degree of compatibility between systems made by different vendors.

The NFS V3 specification was developed during July 1992. Working code for
NFS V3 was introduced by some vendors in 1995 and was made widely available
in 1996. Version 3 incorporated many performance improvements over Version 2
but did not significantly change the way that NFS worked or the security model
used by the network file system.

1.3 NFS V4 design motivations
Increasingly, businesses have needed to secure and protect data. Earlier
versions of NFS had weaknesses that kept them from meeting these needs. The
following list is an example of areas that NFS V2 and NFS V3 have failed to
address:

� Strong authentication to prevent malicious users from masquerading as a
valid user of the system

� Fine-grained access control to make sure only the right people have access
to sensitive data

� Encrypting data traffic to protect it from unauthorized disclosure as it travels
over the network

� Uniquely identifying users in a large organization

� Good system and file I/O performance, including access from remote
locations

� Being able to access shared data from many different platforms

� The use of an open systems design

1.4 Objectives of NFS V4 (RFC3530)
NFS V4 was originally defined under RFC3010 in December 2000. In April 2003
RFC3010 was superseded by RFC3530 to address some of the issues related to
ease of implementation or clarification. The NFS V4 implementation on AIX 5.3 is
based on RFC3530.
 Chapter 1. NFS Version 4 overview 5

The main objectives of the Version 4 protocol focus on addressing the
shortcomings of previous versions as listed in 1.3, “NFS V4 design motivations”
on page 5, while achieving the following overall goals:

� Improved performance over the network

� Enhanced by adding security schemes built into the protocol

� Integrated locking support

� Cross-platform interoperability, including the Microsoft Windows environment

� Protocol extension support in a manner that does not invalidate backward
compatibility

� Movement toward an Open Standard, managed by the IETF, whereas
previous versions of NFS were proprietary

For more detailed information about the new features of the protocol, there are
many references available. Refer to “Related publications” on page 301. One
particularly useful reference for a more detailed discussion of Version 4 protocol
functional design goals is a white paper titled The NFS Version 4 Protocol by
Brian Pawlowski, et al., which can be found at:

http://www.nluug.nl/events/sane2000/papers/pawlowski.pdf

1.5 AIX 5.3 specific implementation of NFS V4
AIX 5.3 supports the latest NFS protocol, Version 4 (NFS V4). AIX also provides
support for NFS Version 3 (NFS V3) and NFS Version 2 (NFS V2) client/server. It
therefore provides backward compatibility with the existing install base of NFS
clients and servers in a heterogeneous environment.

Vendor-specific implementation of RFC3530 into their product depends on
several factors:

� Mandatory versus optional features described in the RFC
� Customer-specific requirements
� Derived business needs

The following features of the protocol are supported in AIX 5.3.

1.5.1 Mandatory features
The RFC has defined that the mandatory features are the minimal set of file or
file system attributes that must be provided by the server and must be properly
6 Securing NFS in AIX

http://www.nluug.nl/events/sane2000/papers/pawlowski.pdf

represented by the server. All implementations of NFS V4, including AIX 5.3,
must support these features to be compliant:

� GSS-API (RFC2078) with Kerberos V5 mechanism
� Identity mapping
� Pseudo-file system model

1.5.2 Optional features
The RFC specification also defines optional features. The term optional is used
here, meaning that the RFC gives the vendor the option to implement the feature
or not. AIX 5.3 implements the following optional features:

� NFS V4 Access Control Lists (ACL)

� Delegation

� Mapping of principals and file ownership attributes from one NFS V4 domain
into another

� Data replication and migration

1.6 Planning and implementation considerations
Planning and implementing NFS V4 is more complex than for previous NFS
versions. Because NFS V4 introduces new advanced capabilities, advanced
planning will make deployment less painful and ongoing management easier.
Therefore, it is essential that you choose the elements of your infrastructure
carefully before beginning your implementation. To help with the decisions you
need to make, we have dedicated a chapter to planning and one for
implementation considerations. We also discuss in detail what we see as
common migration paths. These are discussed in Chapter 5, “Sample
implementation scenarios” on page 119.

1.6.1 Pre-implementation design considerations
1. How will you manage user identities? The options to choose from include:

a. LDAP [RFC2307]

b. NIS

c. Standard UNIX password and group files

2. Will you need to accommodate user identities from other organizations?

3. How will you authenticate users? Options here include:

a. Kerberos
 Chapter 1. NFS Version 4 overview 7

b. Standard UNIX password authentication

4. How will you control access to directories and files? Options here include:

a. Standard UNIX permissions

b. NFS V4 access control lists (ACLs)

• If you choose to use ACLs, how would you structure your directories to
maximize use of the inheritance features?

5. How will you structure your shared file system name space? Think about how
you want to present your NFS exported file systems to the clients. Additional
considerations include:

• Do you want to make the server location transparent to the users? For
example, will you need to move subdirectories between servers without
changing where they appear in the client directory tree?

• Do you have a large, flat directory structure (like home directories)
where using distributed structures would help?

• Do you have special NFS export restrictions that dictate directory
structure?

• Do your file and directory access control methods work better with a
particular directory structure? For example, do you want to structure
access controls grouped by organization or by role?

6. Do you require high availability? Services that might need to be designed for
high availability include:

a. Directory/Identity services

b. Authentication services

c. File services (the actual NFS servers themselves)

7. What is your network architecture? Will you need to place servers near users
in separate geographical locations?

8. How dispersed is your data access?

1.7 Looking ahead to the rest of the book
The questions highlighted in the pre-implementation considerations (outlined in
the previous section) are difficult to answer until a significant amount of planning,
research, and preparation is completed. It is the goal of this book to help prepare
the reader to make these design decisions.
8 Securing NFS in AIX

The next two chapters provide technical background on the NFS V4 protocol as
compared to Version 3 (Chapter 2), then a detailed discussion of the new file
system security control features that Version 4 provides (Chapter 3).

These chapters provide technical background to prepare the reader for planning
an NFS V4 deployment. Before you can proceed with any implementation, you
have to plan it, so Chapter 4, “Planning for NFS V4” on page 93 is the key
chapter in this book. The chapter walks you through a design decision process
for planning your NFS V4 infrastructure.

After your planning is complete, we look at some scenarios and how to
implement them. The scenarios demonstrate how you could get to the final step
of having a running NFS V4 infrastructure. We consider migration paths from a
previous version of AIX and therefore an older version of NFS to AIX 5.3 and
NFS V4. We also consider migration paths from an older version of AIX running
NFS V3 to AIX 5.3 running NFS V3. In total, we look at three different migration
paths.
 Chapter 1. NFS Version 4 overview 9

10 Securing NFS in AIX

Chapter 2. What’s new in NFS V4?

This chapter reveals the differences between NFS V3 and NFS V4, but first we
look at NFS in general and how it has evolved over the years. The aim is to give
those who are new to NFS a basic grounding in the protocol. Those who already
know NFS can skip directly to 2.6, “NFS V4” on page 20.

Continuing from the NFS design discussion, we talk about the differences
between the AIX v5.3 NFS V4 implementation and what the NFS V4 RFC
RFC3530 describes. The reader is advised to refer to the NFS V4 RFC for a
detailed explanation of the protocol. Detailed scenarios and implementation
options will be discussed in the planning and implementation chapters.

The following topics are covered:

� How NFS works

� Protocols used by NFS

� NFS daemons

� NFS V3

� The NFS Lock Manager protocol

� NFS V4

� AIX5L v5.3 implementation of NFS V4

� NFS V4 support on AIX 5.3

� NFS files and commands: a quick reference

2

© Copyright IBM Corp. 2004. All rights reserved. 11

2.1 How NFS works
A server has files on a local disk, irrespective of file system type, that are
accessed through NFS on a client machine. NFS is an application layer protocol
that uses other underlying protocols defined in the TCP/IP model. NFS is built on
top of the TCP/IP protocol stack over the Remote Procedure Call (RPC) protocol.

To handle this operation, NFS consists of:

� Networking protocols
� Client and server daemons

Figure 2-1 How NFS works

2.2 Protocols used by NFS
The NFS-specific protocols are Sun RPC and External Data Representation
(XDR) protocol.

The Open Systems Interconnection (OSI) Reference Model is traditionally used
as a general purpose reference for describing and comparing protocols. We
assume that you are familiar with the OSI model. Figure 2-2 on page 13 attempts
to show the components of the NFS protocol in relation to the OSI Reference
Model. The mapping is only approximate and is intended as a conceptual guide.
12 Securing NFS in AIX

Figure 2-2 Representing NFS with the seven-layer OSI model

2.2.1 UDP or TCP
Both NFS V2 and NFS V3 operate over the User Datagram Protocol (UDP) and
the Transmission Control Protocol (TCP). NFS V3 uses TCP by default. NFS V4
only uses TCP.

TCP is stateful, and NFS is stateless. A stateless server treats each request as
an independent transaction, unrelated to any previous request. This simplifies
the server design because it does not need to allocate storage to deal with
conversations in progress or worry about freeing it if a client dies in
mid-transaction. A disadvantage is that it may be necessary to include more
information in each request, and this extra information will have to be interpreted
by the server each time. UDP neither guarantees delivery nor does it require a
connection. As a result, it is lightweight and efficient, but all error processing and
retransmission must be taken care of by the application program.

A stateful server enables a host to send data in a continuous stream to another
host. The transport service guarantees that all data will be delivered to the other
end in the same order as sent and without duplication. Communication proceeds
through three well-defined phases: connection establishment, data transfer, and
connection release. TCP is a good example of this.

So, the statement that NFS is stateless would seem to be a contradiction and you
would think it impossible for NFS to work over TCP. However, NFS and TCP
 Chapter 2. What’s new in NFS V4? 13

operate in a layer called Remote Procedure Call (RPC), and this hides the state
issues of TCP from NFS.

2.2.2 Remote Procedure Call (RPC)
RPC is a library of procedures. These procedures enable one process (the client
process) to direct another process (the server process) to execute procedure
calls as though the client process had executed the calls in its own address
space. Because the client and the server are two separate processes, they are
not required to be on the same physical system, although they can be. The RPC
call used is based on the file system action taken by the user. For example, when
issuing an ls -la command on an NFS mounted directory, the long listing will be
completed using RPCs NFSPROC3_READDIR or NFSPROC3_READDIRPLUS.
The server in turn will send the output from the command through RPC back to
the client. To the user, this transaction is totally transparent.

2.2.3 eXternal Data Representation (XDR)
Because the server and client processes can reside on two different physical
systems, which may have completely different architectures, RPC must address
the possibility that the two systems may not represent data in the same manner.
Therefore, RPC uses data types defined by the XDR protocol. XDR is the
specification for a standard representation of various data types. By using a
standard data type representation, data can be interpreted correctly, even if the
source of the data is a machine with a completely different architecture. XDR is
used when the vnode points out that the accessed file or directory is not local,
but resides on a remote system. A conversion of data into XDR format is needed
before sending the data. Conversely, when it receives data, it converts it from
XDR format into its own specific data type representation.

2.3 NFS daemons
A daemon is a process that runs continuously in the background and provides
services to clients. Some of the daemons that enable NFS to work are:

� portmap
� nfsd
� rpc.mountd
� rpc.statd

Note: The RPC described here is the Sun RPC and is not to be confused with
the RPC used by products such as DCE. RPC services use TCP or UDP to
transport data packets. NFS V4 only uses TCP as a transport protocol.
14 Securing NFS in AIX

� rpc.lockd
� biod

The rpc.mountd and nfsd daemons run only on the server, and the rpc.lockd and
rpc.statd daemons run on the server and the client. The biod daemon runs only
on the client.

Figure 2-3 NFS client/server model with associated daemons

2.3.1 The portmap daemon
The portmap daemon converts RPC program numbers into Internet port
numbers. When an RPC server starts up, it registers with the portmap daemon.
The server tells the daemon which port number it is listening on and which RPC
program numbers it serves. By this process, the portmap daemon knows the
location of every registered port used by RPC servers on the host, and which
programs are available on each of these ports. When mounting, the mount
request starts with an RPC call named GETPORT that calls the portmap, which
in turn informs the client of the port number that the called RPC server listens to.
After this, the port number is used as reference for further communication. This is
why the NFS daemons must be registered with the portmap daemon.

A client will only consult the portmap daemon once for each program the client
tries to call. The portmap daemon tells the client which port to send the call to.
The client stores this information for future reference. As standard RPC servers
are normally started by the inetd daemon, the portmap daemon must be started
before the inetd daemon is invoked.
 Chapter 2. What’s new in NFS V4? 15

2.3.2 The rpc.mountd daemon
The rpc.mountd daemon handles the actual mount service, which is needed
when a client sends a mount request with an RPC procedure named
MOUNTPROC3_MNT to the server. In addition, it provides a list of currently
mounted file systems and the clients on which they are mounted.

2.3.3 The rpc.statd daemon
The rpc.statd daemon interacts with the rpc.lockd daemon to provide crash and
recovery functions for the locking services on NFS.

2.3.4 The rpc.lockd daemon
The rpc.lockd daemon processes lock requests that are either sent locally by the
kernel or remotely by another lock daemon. The rpc.lockd daemon forwards lock
requests for remote data to the server site lock daemon through the RPC
package. The rpc.lockd daemon then asks the rpc.statd (status monitor) daemon
for monitor service. The reply to the lock request is not sent to the kernel until
both the statd daemon and the server site lockd daemon reply.

2.3.5 The nfsd daemon
The nfsd daemon runs on a server and manages certain aspects of the server
configuration. The actual processing of client requests is handled by a
multi-threaded kernel process rather than the nfsd daemon itself. Each daemon
handles one request at a time. This means that on the server side, the receipt of
any one NFS protocol request from a client requires the dedicated attention of an
nfsd daemon until that request is satisfied, and the results of the request
processing are sent back to the client. The nfsd daemons are the active agents
providing NFS services.

The NFS daemons are inactive if there are no NFS requests to handle. When the
NFS server receives RPC calls on the nfsd daemon’s receive socket, the
daemon is awakened to pick up the packet off the socket and invoke the
requested operations.

Important: The rpc.statd daemon should always be started before the lockd
daemon.
16 Securing NFS in AIX

2.3.6 The block I/O daemon (biod)
The block I/O daemon (biod) runs on all NFS client systems. When a user on a
client wants to read or write to a file on a server, the biod daemon sends this
request to the server. For each read or write request, one biod is requested. The
biod daemon is activated during system startup and runs continuously. The
number of biods are limited on a per-mount-point basis.

The actual work of reading and writing to a file on a server is handled by a
multi-threaded kernel process with one thread assigned for each read or write
request. The number of these threads changes dynamically depending on
demand, but the biod daemon controls the maximum number of these threads
per mount.

2.4 NFS V3
Even though NFS V2 (discussed briefly in the introduction) was widely accepted,
the protocol was not without its problems. This led to the introduction of NFS V3
RFC1813. The Version 2 protocol had the following major problems:

� A file size limit of 4 GB. Only files of up to 4 GB in size could be accessed. As
computer environments began to grow and the need for larger data
repositories became apparent, this limitation became a problem.

� Writes had to be synchronous. This led to write-intensive applications
suffering performance problems. There were quite a few workarounds for this
problem, but most violated the NFS V2 standard.

The main goals for the NFS V3 design were to solve these two problems. In
1994, Brian Pawlowski published a paper (referenced at end of this section) that
provided an overview of the process the designers of the Version 3 protocol went
through. This paper identified the following major areas where the protocol was
enhanced:

� The 4 GB file restriction. All arguments within the protocol (such as file sizes)
were changed from 32-bit to 64-bit.

� The write model was changed to introduce a write/commit phase. This
enabled asynchronous writes.

� A new ACCESS procedure was introduced. This resolved
permission-checking problems when mapping the ID of the superuser. This
procedure is also important for correct behavior when ACLs exist on files.

� The 8 Kb write per procedure call limit was relaxed.

� The READDIRPLUS procedure was introduced. This returned both a file
handle and attributes. This returns both directory entries and per-entry
 Chapter 2. What’s new in NFS V4? 17

attributes. READDIRPLUS is intended to reduce subsequent NFS LOOKUP
calls for each directory entry.

� The file handle size was changed to a variable size, up to a maximum of 64
bytes. NFS V2 had a fixed file handle size of 32 bytes.

� The CREATE procedure was modified. This allowed for exclusive file creates.

� Filenames and pathnames were limited to 255 and 1024 characters
respectively in NFS V2. This was changed in NFS V3 by variable length
strings agreed on between the client and server.

� NFS V3 tightened the errors that could be returned from the server. All error
values are iterated, and no errors outside the list are permitted.

� The blocksize field was removed. The blocks field was changed to used and
recorded the total number of bytes used by the file.

� The NFS3ERR_JUKEBOX error type was introduced. This allowed for
situations when a request is made to the server to read a file migrated to tape.
Obviously, the time to read the data back from the tape will be considerable.
This new error informs the client that the operation is in progress and the call
should be retried.

Forcing writes from asynchronous to synchronous mode will affect performance.
With NFS V3, the client can send a number of asynchronous WRITE requests
that it can then commit to disk on the server at a later date by issuing a COMMIT
request. After the server has received the COMMIT request, it cannot return until
all data has been flushed to disk. The COMMIT request is similar to calling
fsync(). The major difference is that the COMMIT request does not necessarily
cover the data for the whole file. However, it does allow the client to flush all the
data when a file is closed or to break up a large synchronous write request into
smaller writes. These are performed asynchronously, but followed by a COMMIT
request. This is an important enhancement, as it enables the file system on the
server to coalesce a number of write requests into a single large write, making it
more efficient. As the client is required to keep a copy of all data to be written to
the file until a COMMIT is issued, asynchronous writes should not affect the
crash/recovery properties of NFS.

The READDIRPLUS procedure, even though it is efficient, also presents
problems. The procedure was introduced to minimize the number of
over-the-wire LOOKUP requests when a READDIR procedure had been invoked.
An example of this would be an ls -F request on a directory.

The implementation of READDIRPLUS is significantly more expensive than
READDIR. The procedure should only be performed when first accessing the
directory in order to populate the name cache, depending on the underlying
operating system. It should then only be performed again in cases where the
cache was invalidated for the directory due to a directory modification.
18 Securing NFS in AIX

Many of the goals of NFS V3 were to improve performance. A number of different
performance-related tests showed that NFS V3 did indeed meet its objectives
very well, as documented in Pawlowski’s 1994 white paper NFS Version 3 Design
and Implementation, by Brian Pawlowski et al, found at:

http://citeseer.ist.psu.edu/pawlowski94nfs.html

2.5 The NFS Lock Manager protocol
File locking was omitted during the design of the NFS protocol. The main reason
is that to support record locking, state would have to be maintained on the server.
This would dramatically increase the complexity of NFS implementations.

File locking was not something that could be overlooked easily and was therefore
implemented in SunOS as the Network Lock Manager (NLM). NLM went
through various iterations, with Version 3 being most widely used with NFS V2.
With the introduction of NFS V3, the definition of NLM (Version 4) was included in
the NFS specifications, but was still left as a separate protocol. The NLM also
relied on the Network Status Monitor protocol. This was required so the clients
and servers could be notified of a crash so that a lock state could be recovered.

Crash/recovery involves coordination between both the clients and server:

Server crash When locks are handed to clients, the server maintains a
list of clients and the locks that they own. If the server
were then to crash, these locks would then be lost. When
the server reboots, a status monitor runs and sends a
message to all known clients. The lock manager on each
client is notified and given an opportunity to reclaim all
locks it owns for the files on the server. There is a fixed
amount of time in which the clients can respond.

Client crash If the client crashes, any locks that the client holds on the
server must be cleaned up. When the client recovers, it
sends a message to the server to clean up its locks.
Through the use of a client state number, which is
incremented on reboots, the server can detect that the
client has been rebooted and removes any locks that
were held by the client before it crashed and rebooted.

As stated earlier, the NLM was not widely adopted. The NFS protocol in
Version 4 has been extended to include a file locking mechanism. You can find
more information in 2.6.7, “File locking” on page 29.
 Chapter 2. What’s new in NFS V4? 19

http://citeseer.ist.psu.edu/pawlowski94nfs.html

2.6 NFS V4
NFS V4 introduces many substantial changes to the protocol. For example, the
design of NFS predates the widespread adoption of the World Wide Web. It was
originally designed for use in local area networks. With the advent of
internetworking, there has been a greater need to use distributed file systems,
such as NFS, in wide area networks. When NFS is used for distributed file
systems across wide area networks, the security capabilities in pre-Version 4
implementations become apparent.

NFS V4 goes a long way to overcome the shortcomings of NFS V2 and V3, and
adds additional features left out in the NFS V3 implementation. NFS V4 is
described in detail in RFC3530. The main changes that are discussed in this
section are:

� Attribute classes
� User name to UID mapping
� Better namespace handling (pseudo-file systems)
� Built-in security
� Client-side caching and delegation
� Compound procedures
� File locking
� Internationalization
� Volatile file handles

2.6.1 Attribute classes
The set of attributes that were passed over-the-wire with earlier versions of NFS
were very UNIX-oriented. This meant that the information returned by the server
was sufficient to respond to a stat() call on the client. This made it difficult for
non-UNIX systems to understand the protocol properly. To address this issue,
NFS V4 introduces a new set of file attributes in three different classes:

� Mandatory
� Recommended
� Named

Important: Addressing existing security limitations in NFS is the most
significant area of change introduced by Version 4. This redbook devotes an
entire chapter to this topic: Chapter 3, “Enhanced security in NFS V4” on
page 45.
20 Securing NFS in AIX

Mandatory attributes
Mandatory attributes are the minimal set of file or file system attributes that must
be provided by the server and must be properly represented by the server. They
must also be supported by every implementation. The mandatory set of
attributes contain information such as the file type and size, information about the
file handle expiration times, whether hard links and symbolic links are supported,
and whether the file has named data streams and attributes. These are
summarized in Table 2-1.

Table 2-1 Mandatory attributes and their description

Recommended attributes
The recommended attributes contain information such as the type of ACLs that
the file system supports, the ACLs themselves, information about the owner and
group, access timestamps, and quota attributes. They also contain information
about the file system such as free space, total number of files, files available for
use, and the file system limits such as maximum filename length and maximum
number of links. These are summarized in Table 2-2 on page 22.

Mandatory attribute Description

Object type The type of object (file, directory, symbolic link).

File handle expiration Specifies file handle expiration behavior on the
client.

Change indicator The value created by the server that the client can
use to determine if file data, directory contents, or
attributes of a given object have been modified. The
server may return the object’s modify time for this
attribute’s value, but only if the file system object
cannot be updated more frequently than the
resolution of the modify time.

fsid A unique file system identifier for the file system
holding a given object. Contains major and minor
components, each of which are unsigned 64-bit
integers.

Lease duration The time frame in which the leases at the server side
end, in seconds.

Size The size of a given object, in bytes.

UNIX LINK Support Determines whether UNIX hard links are supported.

UNIX SYMLINK support Determines whether UNIX symbolic links are
supported.
 Chapter 2. What’s new in NFS V4? 21

Table 2-2 Recommended attributes and their descriptions

Recommended attributes Description

ACL The Access Control List (ACL) for a given object.

Archive bit Checks to see whether the file has been
archived since the last time it was modified.

Case insensitive Checks whether file names on a given file
system are case-insensitive.

Case preservation Checks whether the file name case in a given file
system is preserved.

Change owner restricted If this attribute is set to TRUE, the server will
reject any request to change the owner or group
associated with a given file if the caller is not a
privileged user (for example, the root user in
UNIX operating systems).

No file name truncation beyond
maximum

Checks to ensure that either an error is returned
or the name is truncated when the maximum file
name size supported for a given object is
exceeded,

File handle An opaque data structure provided by the server
to the client in response to a lookup request.

File ID This attribute is a number uniquely identifying a
file within a given file system.

Hidden Checks to see whether a file is considered
hidden with respect to the WIN32 API.

Maximum file size The maximum file size supported for a file
system for a given object.

Maximum number of links The maximum number of links for a given object.

Maximum file name size The maximum file name size supported for a
given object.

Maximum read size The maximum read size supported for a given
object.

Maximum write size The maximum write size supported for a given
object. It should be supported if the file is
writable. Lack of this attribute can lead to the
client either wasting bandwidth or receiving poor
performance.

MIME type The MIME body type for a given object.
22 Securing NFS in AIX

Named attributes
Named attributes provide a mechanism to associate additional properties with a
filesystem object (such as file or directory). A named attribute is an uninterpreted
opaque stream of bytes with a name. Applications can use named attributes to
place auxiliary application specific data on files. Multiple named attributes can
exist on an object. The OPENATTR procedure is used to access named
attributes for an object. NFS V4 organizes named attributes as a directory of
attribute names. The READDIR and LOOKUP operations are used to obtain the
attribute names. The READ, WRITE, and CREATE operations are then used to
operate on the individual named attributes.

A client would access named attributes in the following way:

� The OPENATTR procedure sets the current filehandle to the named file
attribute directory for the file object.

� The READDIR and READDIRPLUS procedures retrieve the file handles for
the various named attributes associated with the original file system object.

UNIX mode bits The UNIX-style permission bits for a given
object.

Owner string The string name of the owner for a given object.

Group string The string name for the group ownership of a
given object.

Modify time The time of the last modification of a given
object.

Create time The creation time of a given object. This attribute
does NOT have any relation to the traditional
UNIX file attribute ctime or change time.

Access time The time of last access for a given object.

Space available to user The disk space, in bytes, available to a user on
the file system containing a given object.

File system free space The free disk space, in bytes, on the file system
containing a given object.

File system total space The total disk space, in bytes, on the file system
containing a given object.

Space used by object The number of file system bytes used by a given
object.

Recommended attributes Description
 Chapter 2. What’s new in NFS V4? 23

2.6.2 Username to UID mapping
With the Version 3 protocol and the commonly used AUTH_SYS RPC flavor, NFS
requests contain a set of user credentials with a user ID (UID) and a list of group
IDs (GIDs) to which the UID belongs. On the NFS server, these credentials are
used to perform the permission checks that are part of UNIX file system access
control (for example, verifying write permission to remove a file, or execute
permission to search directories.) Additionally, filesystem object user and group
ownership information is transferred as numeric integer values. Using integers to
represent users and groups requires every client and server that would connect
to each other to agree on user and group ID assignments. This UID to name
mapping occurs only on the client.

NFS V4 departs from this model of identity representation. When transferring
ownership information, it represents users and groups as strings in the following
form:

user@nfs_domain

or

group@nfs_domain

Additionally, it is expected that the stronger RPCSEC-GSS RPC security flavor
will be largely deployed with NFS V4. With RPCSEC-GSS, an opaque security
token flows on the wire. From it, the receiver (NFS server) derives a string
representation (principal) of the accessing identity. The server transforms the
principal string into its native credentials. On UNIX systems, this results in a UID
and corresponding list of member GIDs.

String-based identities require NFS clients and servers to translate between the
protocol string attributes and the internal formats (UID and GID) that are used
within the operating system.

Representing users and groups as strings provides added flexibility and removes
the requirement that all systems utilize the same numeric ID space. It is expected
that all systems share a common view of the user and group name space within
a given NFS domain. The use of strings also opens the potential capability for
interdomain NFS sharing when the capability exists to map an identity from a
foreign domain into the receiver’s local domain.

Note: Named attributes are an optional protocol feature. Both the server and
client must support named attributes for them to be used.
24 Securing NFS in AIX

2.6.3 Better namespace handling
NFS V2 and NFS V3 servers export a set of independent parts of their overall
namespace and do not allow NFS clients to cross mountpoints on the server.
This is because NFS expects all lookups to stay within a single file system. In
NFS V4, the server provides a single root file handle through which clients can
obtain file handles for any of the accessible exports.

NFS V4 no longer has a separate mount protocol. Instead of exporting a number
of distinct exports, an NFS V4 client sees the NFS V4 server’s exports as existing
inside a single file tree, called the nfsv4 pseudo-file system. The pseudo-file
system tree constructed by the server creates a single logical view of all the
different exported file systems (Figure 2-4).

Figure 2-4 Pseudo-file systems: server view

Important: For UID translation, NFS V4 requires that user and group names
are consistent between the client and server to avoid potential access errors
to secured data. However, the numeric UID space between systems does not
have to match. We look at how this works in practice in 3.2.2, “User/group
identities and NFS V4” on page 50.
 Chapter 2. What’s new in NFS V4? 25

In Figure 2-4 on page 25, we would like to export the following directories:

� /exports/home/sally
� /exports/home/bob
� /exports/home/mary
� /exports/project/proja
� /exports/project/projb

On the server, you must:

1. Set the pseudo-root node; in our case, we set this to /exports

2. Add the directories to export to the /etc/exports file:

/exports/home/sally -vers=4,ro
/exports/home/bob -vers=4,ro
/exports/home/mary -vers=4,ro
/exports/project -vers=4,ro
/exports/project/projA -vers=4,ro
/exports/project/projB -vers=4,ro

3. Run:

exportfs -va

4. On the client, mount the root export:

mount -o vers=4 <nfsv4_svr_name>:/ /<local_mount_point>

The contents of the newly mounted file system appear in Example 2-1 and
Figure 2-5 on page 27.

Example 2-1 Client view of the pseudo-file system

ls -al /nfs/*
/nfs/home:
total 26
drwxr-xr-x 4 root system 5 Jul 28 11:26 .
drwxr-xr-x 3 root system 4 Jul 28 11:26 ..
drwxr-xr-x 2 root system 512 Jul 28 11:24 bob
drwxr-xr-x 2 root system 512 Jul 28 11:25 mary
drwxr-xr-x 2 root system 512 Jul 28 11:24 sally
/nfs/project:
total 18
drwxr-xr-x 3 root system 4 Jul 28 11:26 .
drwxr-xr-x 3 root system 4 Jul 28 11:26 ..
drwxr-xr-x 2 root system 512 Jul 28 10:40 proja
drwxr-xr-x 2 root system 512 Jul 28 10:40 projb
26 Securing NFS in AIX

Figure 2-5 Pseudo-file systems: client view

The server has provided the client with a single view of the exported file systems.
In NFS V4, a server’s named space is a single hierarchy. In the example above,
the export list hierarchy is not connected. When a server chooses to export a
disconnected portion of its name space, the server creates a pseudo-file system
to bridge the unexported portions of the name space, allowing a client to reach
the export points from the single common root. A pseudo-file system is a
structure containing only directories, created by the server having a unique fsid,
that enables a client to browse the hierarchy of the exported file systems.

The client view of the pseudo-file system is limited to paths that lead to the
exported file systems. Because /home/joe and /dept are not exported in the
example, they do not appear on the client during browsing operations
(Figure 2-5).

2.6.4 Built-in security
NFS has always relied on client-side authentication to provide security. This has
generally not been a problem because NFS has largely been used within private
networks. One of the objectives of the Version 4 protocol is to enable increased
use of NFS to wide area networks.

The basic NFS security mechanisms are extended in NFS V4 through the
mandated support of the RPCSEC_GSS RPC security flavor. RPCSEC_GSS is
implemented at the RPC layer. It is capable of supporting different security
mechanisms. Examples include Kerberos Version 5, and public-key-based
mechanisms such as SPKM. NFS V4 requires that RPCSEC-GSS be provided
 Chapter 2. What’s new in NFS V4? 27

as an available RPC security flavor. It mandates that the Kerberos Version 5,
SPKM, and LIPKEY security mechanisms be supported for full protocol
compliance. It still allows the support and use of other RPC security flavors such
as AUTH_SYS. A key weakness of the AUTH_SYS flavor has always been the
ease with which hackers can forge and impersonate credentials.

RPCSEC_GSS is different from AUTH_SYS in two ways:

� RPCSEC_GSS goes beyond authentication to perform integrity checksums
and encryption of the entire body of the RPC request and response.

� As RCPSEC_GSS encapsulates the GSS-API messaging tokens, it acts as a
transport for mechanism-specific tokens for security flavors such as Kerberos.
Adding new security mechanisms does not require rewriting significant
portions of NFS or any other ONCRPC-based application.

All versions of NFS are capable of using RPCSEC_GSS. The difference is that
while an implementation can claim to conform to NFS V2 and NFS V3 without
implementing support for RPCSEC_GSS, a conforming implementation (one that
claims to be based on RFC3530) of NFS V4 must implement security based on
Kerberos Version 5 (as done in AIX 5.3) and LIPKEY. Kerberos V5 (KRB5) and
LIPKEY are GSS-API conforming mechanisms.

Kerberos divides user communities into realms. Each realm has an administrator
responsible for maintaining a database of principals or users, one master Key
Distribution Center (KDC), and one or more slave KDCs that give user tickets to
access services on specific hosts in a realm. Users in one realm can access
services in another realm via trust relationships between the KDCs. Kerberos is a
very good choice for enterprise work groups operating within an intranet. It
provides centralized control, as well as single sign-on to the network. We will
discuss Kerberos further in upcoming chapters.

The Low Infrastructure Public Key (LIPKEY) system provides an SSL-like
model and is equivalent security for use on the Internet. LIPKEY is a GSS-API
security mechanism that uses a symmetric key cipher and server-side public key
certificates. LIPKEY will not be discussed in any more detail as the NFS V4
implementation in the initial release of AIX 5L™ v5.3 does not support it.

2.6.5 Client-side caching and delegation
Most NFS client implementations do caching of both data and attributes to
improve performance and reduce network traffic. Some vendors also support a
technology known as cachefs that allows extended caching of file and directory
content data to persistent storage (disk) on the client system. This further
increases the amount of data a client can cache.
28 Securing NFS in AIX

With caching, some amount of server interaction is still required to maintain the
required semantics of the NFS protocol. Clients must check with servers and
open time to validate and flush cached information as appropriate. In addition,
the client periodically polls the server while files are in use. Depending on the
application environment, the network traffic associated with client cache
maintenance can be modest. In less reliable or slower networks, this traffic can
represent a performance restriction.

NFS V4 provides an optional protocol mechanism called delegation that can
improve the caching of NFS. With delegations, the open time network traffic can
be avoided as well as the periodic checks to servers. The reduction in network
traffic can help increase the performance and scale of an NFS environment.

NFS V4, like its predecessors, has a weak cache consistency model. Clients are
not guaranteed to see the most recent changes to data at a server. Delegations
are optional and are granted at the NFS server’s discretion. Without a delegation,
the NFS V4 client operates similar to previous versions of NFS.

2.6.6 Compound RPC procedures
Many file-related operations over NFS require a large number of RPC calls. In a
local area network this is not an issue; however, when operating in a wide area
network, the effect on performance can be much more noticeable. NFS V4
introduces a compound RPC model where it is possible to combine multiple
protocol operations into a single RPC request. This creates potential to more
efficiently utilize network resources by reducing the total number of RPC
transactions for a given workload.

2.6.7 File locking
We have already talked about the fact that file locking is not an integrated part of
NFS V2 and NFS V3. NFS V4 provides both UNIX-level file locking functions and
Windows-based share locking functions. This gives NFS V4 better
interoperability in heterogeneous environments. File locking in its simplest form is
the ability to block I/O operations by other applications on a file that contains a
record lock. Methods for managing state ID facilitates this operation.

A stateid is a unique 64-bit object that defines the locking state of a specific file.
When a client requests a lock, it presents a clientid and unique-per-client lock
owner identification to identify the lock owner.

When a client first contacts a server, it presents an opaque structure identifying
itself to the server. The opaque structure uniquely identifies a particular client.
After the server receives the client’s identifying data, it returns a 64-bit clientid.
The clientid is unique and will not conflict with those previously generated.
 Chapter 2. What’s new in NFS V4? 29

2.6.8 Internationalization
Previous versions of the NFS protocol handled file names as an opaque byte
stream. They were limited to a 7-bit US ASCII representation, but were
commonly encoded in 8-bit ISO-Latin-1. There was no way to specify the type of
encoding in the XDR. This limited the use of NFS in environments where there
may be mixed character sets. In order to provide better support for
internationalization, filesystem object names (such as files and directories) are
encoded as UTF-8 in NFS V4.

2.6.9 Volatile file handles
In previous versions of NFS, a file handle is a per-server unique identifier for a
file system object that is opaque to the client. It is defined as having a value that
is fixed for the lifetime of a file system object to which it refers. For example, a file
handle on UNIX contains the inode number and the generation count. As the
inodes are freed and reallocated, the generation count of the inode is
incremented when reused. This ensures that a client file handle that refers to the
old file cannot now be referred to the new file, even though the inode number
stays the same.

NFS V4 divides file handles into two types: persistent and volatile. Persistent file
handles describe the traditional file handle. Volatile file handles is a concept
introduced in NFS V4, in which a client must cache the mapping between path
name and file handle, and regenerate the file handle upon expiration.

2.7 AIX 5L v5.3 implementation of NFS V4
In this section, we discuss the parts of the NFS V4 protocol specification that IBM
has chosen to implement. AIX 5.3 is the first version of AIX to introduce support
for NFS V4. It is very important to note that it continues to support NFS V2 and
NFS V3. In fact, in AIX 5.3, Version 3 is still the default NFS protocol version that
is used in server exports and client mounts. This decision was primarily made to
allow for an easier migration to AIX 5.3 from previous versions. As you already
know, NFS V4 introduces some major changes, so it would not make sense to
make Version 4 the default version. The vers option may be used with mounts
and exports to specify NFS Version 4.

Note: In AIX 5.3, the default for exports is still NFS V3, not Version 4. You
must explicitly declare an export for NFS V4 using the vers option. See
Example 2-1 on page 26.
30 Securing NFS in AIX

The initial AIX support places an emphasis on security, with support of the
optional NFS V4 ACL model when using the AIX Enhanced Journaled File
System. Support for managing access from foreign NFS V4 domains is also
included. NFS V4 provides the RPCSEC_GSS RPC authentication flavor
supporting the Kerberos 5 security mechanism with AIX 5.3. RPCSEC_GSS can
also be used with the NFS V3 protocol.

When you first look at NFS on AIX V5.3, you will not see anything different. NFS
on AIX V5.3 supports NFS V2, NFS V3, and NFS V4. For this reason, all of the
daemons that you would see in previous versions of AIX are included in AIX 5.3.
One side effect of incorporating NFS V4 into AIX 5.3 is that NFS V3 security
controls can been extended by using some of the security features that are
required to create a V4 conforming implementation.

2.8 NFS V4 supported features in AIX 5.3
This section offers detailed descriptions of various features of NFS V4 that are
implemented in AIX 5L Version 5.3.

2.8.1 Mandatory feature support
The mandatory features of the NFS V4 protocol are supported as described in
RFC3530, with the following exceptions:

� The UTF-8 requirements are not fully supported.

Specifically, the transmission of file names and file system strings such as
symbolic link contents and directory entry names are not guaranteed to be in
UTF-8 format. Transmission of NFS attribute strings, such as owner and
owner group, are always in UTF-8 format. The NFS server and client do
perform UTF-8 validation on incoming string data as defined in RFC3530.
This checking may be administratively disabled using the nfso command.
Disabling UTF-8 checking may be necessary to use NFS V4 in environments
with non-UTF-8 configurations and data.

� The LIPKEY and SPKM-3 security mechanisms are not supported with
RPCSEC_GSS authentication.

Note: The AIX Enhanced Journaled File System is a JFS2 file system with the
Extended Attributes Version 2 capability enabled to use NFS V4 ACLs.

Note: Kerberos V5 is the only RPCSEC_GSS security mechanism that is
supported in the implementation of NFS V4 in the initial release of AIX 5.3.
 Chapter 2. What’s new in NFS V4? 31

2.8.2 Other unsupported features
� Diskless client, Network Installation Management (NIM), and UDP are not

supported over NFS V4.

We have mentioned before that exporting individual files is not supported on
NFS V4, hence the lack of support for Diskless clients and NIM, which require
individual files to be exported.

� Delegation is not supported in the initial AIX V5.3 implementation.

2.8.3 Optional feature support
The following optional features of NFS V4 are supported:

� NFS V4 ACLs are supported by both the client and server.

The NFS client supports management of NFS V4 ACLs using the acledit,
aclget, and aclput utilities. The NFS server is capable of storing and
retrieving NFS V4 ACLs in underlying file systems that support the NFS V4
ACL model. We offer more information in the next section.

� Support is provided to map principals and file ownership attributes from one
NFS V4 domain into another.

This support is primarily intended for use at AIX NFS servers. It requires
deployment of Enterprise Identity Mapping. The NFS mappings are managed
using the chnfsim command.

� The AIX NFS V4 implementation supports two ACL types in underlying file
systems: NFS V4 and AIXC.

Both of these ACL types are described below and in more detail in 3.4.2,
“AIXC ACLs” on page 63 and 3.4.3, “NFS V4 ACLs: description” on page 65.

2.8.4 NFS4 ACL
The NFS4 ACL is the ACL defined by the NFS V4 protocol. It is
platform-independent, so it can be supported by other vendors’ clients or servers.
NFS V4 clients and servers are not required to support NFS4 ACL.

On an AIX server, if an underlying physical file system instance supports NFS4
ACLs, then the AIX NFS V4 server supports NFS4 ACL for that file system
instance. The NFS client supports management of NFS V4 ACLs using the
acledit, aclget, and aclput utilities. The NFS server is capable of storing and
retrieving NFS V4 ACLs in underlying file systems that support the NFS V4 ACL
model.
32 Securing NFS in AIX

Most physical file system types on AIX do not support NFS4 ACL. These file
system types include, but are not limited to: CFS, UDF, JFS, and JFS2 with
extended attribute Version 1.

See Chapter 3, “Enhanced security in NFS V4” on page 45 for more information
about NFS V4 ACL support.

2.8.5 AIXC ACLs
The AIXC ACL is an AIX-proprietary ACL. It is not defined by the NFS V4
protocol, and it is understood only by AIX servers and clients.

On an NFS V4 server, AIXC ACL is supported when the underlying file system
instance supports AIXC ACL. All instances of JFS and JFS2 support the AIXC
ACL.

An NFS V4 or NFS V3 client has a mount option that enables or disables support
for AIXC ACL. The default is to not support AIXC ACL. A user on an NFS V4
client file system can read and write AIXC ACL when both the client and the
server are running AIX, the underlying physical file system instance on the server
supports AIXC ACL, and the AIX client mounts the file system instance with
AIXC ACL enabled. AIXC ACL support in NFS V4 is similar to the AIXC ACL
support in AIX NFS V2 and NFS V3 implementations.

All instances of a JFS2 file system with extended attribute Version 2 support both
AIXC ACL and NFS V4 ACL. A file in this type of file system may have mode bits
only (no ACL), an NFS4 ACL, or an AIXC ACL. But it cannot have NFS4 ACL and
AIXC ACL at the same time.

The aclgettypes command can be used to determine the ACL types that can be
read and written on a file system instance. This command may return different
output when it runs against a physical file system on an NFS V4 server locally
than when it runs against the same file system on an NFS V4 client. For
example, an NFS V4 file system instance on an NFS V4 server may support NFS
V4 ACL and AIXC ACL, but the client is only configured to send and receive NFS
V4 ACL (mounted with the -noacl option). In this case, when aclgettypes is
executed from an NFS V4 client file system, only NFS V4 is returned. Also, if a
user on the client requests an AIXC ACL, an error is returned.

The authoritative source for access checking lies in the underlying file system
exported by the NFS server. The file system takes into consideration the file’s
access controls (ACLs or permission bits), the caller’s credentials, and other local
system restrictions that might apply.

Note: Only JFS2 with extended attribute Version 2 (J2) supports NFS V4 ACLs.
 Chapter 2. What’s new in NFS V4? 33

The aclget, aclput, and acledit commands can be used on the client to
manipulate either NFS4 or AIXC ACLs. For more information, see Access
Control Lists in AIX 5L Version 5.3 Security Guide, SC23-4907.

2.8.6 External name space (exname)
External name space (exname) is not part of the NFS V4 RFC. This is an option
specific to AIX implementation. The exname option extends the pseudo-file
system concept. The external name in your /etc/exports file must begin with the
nfsroot name. But an exname export does not have to correspond to the server’s
root. Figure 2-6 explains how this works.

Figure 2-6 Representation of how the server builds the exname pseudo FS view

Important: With AIXC or NFS V4 ACLs implemented in an exported file
system, applications and users should not assume that examination of UNIX
mode bits or ACLs alone can be used to conclusively predict access.
34 Securing NFS in AIX

We want to render the view in such a way that the client sees what is represented
by the pseudo-root part of Figure 2-6 on page 34. So, on the server, we want to
export the following file systems:

/local/home
/local/dept
/local/trans
/usr/codeshare/ThirdPartyProgs

We also want to make sure that we do not expose our server’s file system tree to
the client. How can we achieve this?

Using the exname option, we create the /etc/exports file:

/local/trans -vers=4,rw,exname=/exports/trans
/local/dept -vers=4,rw,exname=/exports/dept
/local/home -vers=4,rw,exname=/exports/home
/usr/codeshare/ThirdPartyProgs -vers=4,ro,exname=/exports/ThirdPartyProgs

We can see from this example that the exname option does not have the full path
to the individual exports under /exports. In fact, you could specify the full path for
all other exports. However, by following our example, the client is never shown
the server’s directory tree. This hides visibility of the actual server file system
layout from the client.

If you intend to export a large number of directories under /local allowing the local
component to be seen under /exports, then the exname option could also be
used as shown:

/local/trans -vers=4,rw,exname=/exports/local/trans
/local/dept -vers=4,rw,exname=/exports/local/dept
/local/home -vers=4,rw,exname=/exports/local/home
/usr/codeshare/ThirdPartyProgs
-vers=4,ro,exname=/exports/local/ThirdPartyProgs

2.8.7 Protocol differences: server exporting and client mounting
For a full description of allowable export restrictions and export semantics, see
the exportfs command description in AIX 5L Version 5.3 Commands Reference,

Attention: We must make sure that we set the pseudo-root on the server to
/exports. When the server renders the pseudo FS view for the client, the
directory or file under the /exports directory will be hidden. So, if you want to
have directories and files user /exports available to the clients, you should
either move them to another directory and export or choose a different
directory to be the anchor for the pseudo-root.
 Chapter 2. What’s new in NFS V4? 35

Volume 2, SC23-4889, and the /etc/exports file description in AIX 5L Version
5.3 Files Reference, SC23-4895.

Here are some differences between NFS V2, NFS V3, and NFS V4 in how
mounts are handled. In NFS V2 and NFS V3, the server exported the directories
that it wanted to make available for mounting. The NFS V2 or NFS V3 client then
had to explicitly mount each export to which it wanted access.

With NFS V4, the server still specifies export controls for each server directory or
file system to be exported for NFS access. From these export controls, the server
renders a single directory tree of all the exported directories. This tree, a
pseudo-file system, starts at the NFS V4 server’s pseudo-root. The NFS V4
pseudo-file system model enables an NFS V4 client, depending on its
implementation, to perform a single mount of the server’s pseudo-root in order to
access all of the server’s exported data. The AIX NFS V4 client supports this
feature. The actual content seen by the client is dependent on the server’s export
controls. (See 2.6.3, “Better namespace handling” on page 25.)

NFS V4 does not allow file-to-file mounting.

When a directory is exported by the server, that directory is only available to
clients using the NFS V2 or NFS V3 protocol by default. To allow access by NFS
V4, the export options must include the vers option. For details, see the exportfs
command description in AIX 5L Version 5.3 Commands Reference, Volume 2,
SC23-4889.

Client communication with the rpc.mountd daemon does not occur with NFS V4
mount processing. Operations in the core NFS V4 protocol are used to service
client side mount operations. The NFS V4 server implementation does utilize the
rpc.mountd daemon as part of handling NFS V4 access.

2.8.8 NFS files
This section includes information on the configuration files related to and used by
NFS and the new Version 4 protocol.

� “/etc/exports file” on page 37
� “/etc/xtab file” on page 38
� “/etc/nfs/hostkey file” on page 38
� “/etc/nfs/local_domain file” on page 38
� “/etc/nfs/realm.map file” on page 39
� “/etc/nfs/princmap” on page 39
� “/etc/nfs/security_default” on page 40
36 Securing NFS in AIX

/etc/exports file
The /etc/exports file indicates all directories that a server exports to its clients.
Each line in the file specifies a single directory. The server automatically exports
the listed directories each time the NFS server is started. These exported
directories can then be mounted by clients. The syntax of a line in the
/etc/exports file is:

directory -option[,option]

The directory is the full path name of the directory. Options can designate a
simple flag such as ro (read only) or a list of host names. See the specific
documentation of the /etc/exports file and the exportfs command for a complete
list of options and their descriptions.

Here are entries from a sample /etc/exports file:

/exports/project/proja -ro,access=nfs401:nfs402:nfs403:nfs404
/exports/home -root=nfs404,access=nfs404
/var/tmp
/exports/dept/sales -vers=4,sec=krb5,access=allsales,root=allsales2

The first entry in this example specifies that the /exports/project/proja
directory can be mounted by the systems named nfs401, nfs402, nfs403, and
nfs404. These systems can read data and run programs from the directory, but
cannot write to the directory.

The second entry in this example specifies that the /exports/home directory can
be mounted by the system nfs404 for read/write access. Additionally, nfs404 may
access data on the server as the root user.

The third entry in this example specifies that any client can mount the /var/tmp
directory (with read/write access).

Important: NFS V4 does not support file exporting. If you need to export a
specific file, export it as Version 2 or 3 (using the vers=2 or vers=3 options).

Note: The /etc/rc.nfs script will not start the nfsd daemons or the rpc.mountd
daemon if the /etc/exports file does not exist.

Attention: You will notice there is no access list specified for the /var/tmp
entry. This means that all clients can mount this directory, and this is very
insecure. However, you now have the ability to use the sec=krb5 option, and
this would take away the worry of openly exporting the directory.
 Chapter 2. What’s new in NFS V4? 37

The fourth entry allows access to the /export/dept/sales directory only to
clients in the allsales netgroup using NFS V4 protocol and accessing the
directory using Kerberos 5 (krb5) authentication. Root access is allowed only
from allsales2.

/etc/xtab file
The /etc/xtab file has a format similar to the /etc/exports file and lists the currently
exported directories. Whenever the exportfs command is run, the /etc/xtab file
changes. This enables you to export a directory temporarily without having to
change the /etc/exports file. If the temporarily exported directory is unexported,
the directory is removed from the /etc/xtab file.

/etc/nfs/hostkey file
This file is used by the NFS server to specify the Kerberos host principal and the
location of the keytab file. For instructions on how to configure and administer
this file, see the nfshostkey command description in AIX 5L Version 5.3
Commands Reference, Volume 4, SC23-4891, or the command’s man pages.

/etc/nfs/local_domain file
This file contains the local NFS domain of the system. It is implied that systems
that share the same NFS local domain also share the same user and group
registries. The chnfsdom command is used to administer this file:

chnfsdom itsc.austin.ibm.com
#
chnfsdom
Current local domain: itsc.austin.ibm.com
#

For further information about the chnfsdom command, see the AIX 5L Version 5.3
Commands Reference, Volume 1, SC23-4888, and the command’s man pages.

Tip: Note the introduction of two new options: vers and sec.

Important: The /etc/xtab file is updated automatically. You should not edit this
file manually.

Important: You should not edit this file manually. Always use the chnfsdom
command. The command automatically tells the nfsrgyd daemon that you
have changed the local NFS domain. Also, a given NFS server or client
machine can only belong to one NFS V4 domain.
38 Securing NFS in AIX

/etc/nfs/realm.map file
This file is used by the NFS registry daemon to map incoming Kerberos
principals of the form name@kerberos-realm to the form name@nfs-domain. It then
can resolve the name@nfs-domain to a local UNIX credential. This file provides
a simple way to map Kerberos principals into the server’s user registry. It is
appropriate when clients in different Kerberos realms will be accessing the
server, but the user namespace is global. For all Kerberos realms the server
supports, the file contains lines in the following format:

realm1 nfs-domain
realm2 nfs-domain

If the Kerberos realm name is always the same as the server’s NFS domain, this
file is not needed.

When the foreign identity mapping features of AIX NFS V4 support are used to
facilitate inter-nfs-domain access, the mapping rules managed by the chnfsim
utility allow mapping of realms into domains. In this case, chnfsim should be
used instead of chnfsrtd.

See the chnfsrtd command description in AIX 5L Version 5.3 Commands
Reference, Volume 1, SC23-4888, or the command’s man pages for more details.

/etc/nfs/princmap
This file maps host names to Kerberos principals when the principal is not the
fully qualified domain name of the server. It consists of any number of lines of the
following format:

<host part of principal> <alias1> <alias2> ...

To add, edit, or remove entries from this file, use the nfshostmap command. For
more information, see the nfshostmap command description in AIX 5L Version
5.3 Commands Reference, Volume 4, SC23-4891, or the command’s man(1)
pages.

Important:

� Multiple Kerberos realms can map to a single nfs-domain. The previous
example demonstrates two realms mapping to one domain. However, a
single realm cannot map to multiple nfs domains.

� We recommended that you do not edit the /etc/nfs/realm.map file manually.
Always use the chnfsrtd command.
 Chapter 2. What’s new in NFS V4? 39

/etc/nfs/security_default
The /etc/nfs/security_default file contains the list of security flavors that may be
used by the NFS client, in the order in which they should be used. Use the
chnfssec command to manage this file.

1. To create a new /etc/nfs/security_default file and tell the NFS client to first use
krb5, then krb5i, and then sys security:

chnfssec -a krb5,krb5i,sys
#
cat /etc/nfs/security_default
krb5
krb5i
sys
#

2. To add a security flavor:

chnfssec -a krb5,krb5i,krb5p,sys
#
cat /etc/nfs/security_default
krb5
krb5i
krb5p
sys

3. To remove a security flavor:

chnfssec -r krb5p
#
cat /etc/nfs/security_default
krb5
krb5i
sys
#

See the chnfssec command description in AIX 5L Version 5.3 Commands
Reference, Volume 1, SC23-4888, or man pages for more information.

Attention: If you add a security flavor to /etc/nfs/security_default, you
must specify all of the existing methods with the new methods when
running the chnfssec command. In this example, we add krb5p to
/etc/nfs/security_default. As you can see, we have already used all the
flavors in the file. Failure to do this (chnfssec -a krb5p) will result in the
existing file being overwritten with the flavor specified in the command.
40 Securing NFS in AIX

2.8.9 Restricting NFS port ranges
The NFS_PORT_RANGE environment variable may be used to limit the source
port of network calls that the client makes to the server. This is very useful in a
firewalled environment. Prior to the introduction of this feature, you had no control
over what source port AIX would use, making firewall maintenance a difficult
task. If used, this environment variable should be added to the /etc/environment
file. The syntax of the environment variable is:

NFS_PORT_RANGE=udp[<starting_port>-<ending_port>]:tcp[<starting_port>-\
<ending_port>]

In the following example, UDP packets sent by the client will have a source port
in the range 3000 to 4000, and TCP connections will have a source port in the
range 5000 to 6000. This means that you can now restrict traffic on all other
higher range ports apart from the ones listed above.

NFS_PORT_RANGE=udp[3000-4000]:tcp[5000-6000]

2.8.10 Use of NFS_NOBODY
By default, and unauthenticated user is shown as user nobody belonging to group
nobody. This can be changed by setting the NFS_NOBODY environment variable.
This enables the user to be shown as whatever you set the NFS_NOBODY
variable to.

2.9 NFS daemons, files, and commands: a quick reference
Table 2-3 lists the NFS daemons and their subsystem names. The following
daemons are new to AIX and were specifically added to support NFS V4:

� /usr/sbin/gssd
� /usr/sbin/nfsrgyd

Table 2-3 List of NFS daemons

NFS daemons Description

/usr/sbin/gssd Services kernel requests for GSS operations.

/usr/sbin/nfsrgyd Provides a names translation service for NFS servers and
clients.

/usr/sbin/rpc.lockd Processes lock requests through the RPC package.

/usr/sbin/rpc.statd Provides crash-and-recovery functions for the locking
services on NFS.
 Chapter 2. What’s new in NFS V4? 41

Table 2-4 gives an overview of all of the NFS files in AIX 5.3. The following files
are new to AIX 5.3 and were introduced specifically for NFS V4:

� /etc/nfs/hostkey
� /etc/nfs/local_domain
� /etc/nfs/realm.map
� /etc/nfs/princmap
� /etc/nfs/security_default

The /etc/filesystems file also has new options for NFS V4.

Table 2-4 List of NFS files and those new to AIX 5.3

/usr/sbin/biod Sends the client’s read and write requests to the server. The
biod daemon is SRC-controlled.

/usr/sbin/rpc.mountd Answers requests from clients for file system mounts. The
mountd daemon is SRC-controlled.

/usr/sbin/nfsd Starts the daemons that handle a client’s request for file
system operations. nfsd is SRC-controlled.

/usr/sbin/portmap Maps RPC program numbers to Internet port numbers.
portmap is inetd-controlled.

/usr/sbin/rpc.rstatd Returns performance statistics obtained from the kernel.

/usr/sbin/rpc.pcnfsd Handles service requests from PC-NFS clients.

Files Description

/etc/nfs/hostkey Used by the NFS server to specify the Kerberos host
principal and the location of the keytab file.

/etc/nfs/local_domain Contains the local NFS domain of the system.

/etc/nfs/realm.map Used by the NFS registry daemon to map incoming
Kerberos principals of the form name@kerberos-realm to the
form name@nfs-domain.

/etc/nfs/princmap Maps host names to Kerberos principals when the principal
is not the fully qualified domain name of the server.

/etc/nfs/security_default Contains the list of security flavors that may be used by the
NFS client, in the order in which they should be used.

/etc/filesystems Lists all file systems that can potentially be mounted and
their mounting configuration - persistent mounts.

NFS daemons Description
42 Securing NFS in AIX

Table 2-5 gives a list of all NFS commands in AIX 5.3. The following commands
are new in AIX 5.3 and were specifically included for NFS V4:

� /usr/sbin/chnfsdom
� /usr/sbin/chnfsrtd
� /usr/sbin/chnfssec
� /usr/sbin/nfshostkey
� /usr/sbin/nfshostmap
� /usr/sbin/nfs4cl
� /usr/sbin/chnfsim (delivered in the bos.cim.rte fileset)

Table 2-5 List of NFS commands and those new to AIX 5.3

/etc/bootparms Lists the servers that diskless clients can use for booting
from.

/etc/exports Lists directories that can be exported to NFS clients.

/etc/networks Contains information about networks on the Internet
network.

/etc/pcnfsd.conf Options for the rpc.pcnfsd daemon.

/etc/rpc Contains database information for Remote Procedure Call
(RPC) programs.

/etc/xtab Lists directories that are currently exported.

Commands Description

/usr/sbin/chnfsdom Changes the local NFS domain.

/usr/sbin/chnfsrtd Changes NFS realm mappings.

/usr/sbin/chnfssec Manages the /etc/nfs/security_default file.

/usr/sbin/nfshostkey Configures the host key for an nfs server.

/usr/sbin/nfshostmap Manages mapping of host names to Kerberos principles.

/usr/sbin/nfs4cl Displays or modifies current NFS V4 statistics and
properties.

/usr/sbin/chnfsim Changes NFS foreign identity mappings.

/usr/sbin/chnfs Starts a specified number of biod and nfsd daemons.

/usr/sbin/mknfs Configures the system to run NFS and starts NFS
daemons.

Files Description
 Chapter 2. What’s new in NFS V4? 43

/usr/sbin/nfso Configures NFS network options.

/usr/sbin/automount Mounts an NFS automatically on access.

/usr/sbin/chnfsexp Changes the attributes of an NFS-exported directory.

/usr/sbin/chnfsmnt Changes the attributes of an NFS-mounted directory.

/usr/sbin/exportfs Exports and unexports directories to NFS clients.

/usr/sbin/lsnfsexp Displays the characteristics of directories that are exported
with NFS.

/usr/sbin/lsnfsmnt Displays the characteristics of mounted NFS systems.

/usr/sbin/mknfsexp Exports a directory.

/usr/sbin/mknfsmnt Mounts a directory using NFS.

/usr/sbin/rmnfs Changes the configuration to stop the NFS daemons.

/usr/sbin/rpcinfo Reports the status of RPC servers.

/usr/sbin/rmnfsexp Removes NFS-exported directories from a server’s list of
exports.

/usr/sbin/rmnfsmnt Removes NFS-mounted file systems from a client’s list of
mounts.

/usr/sbin/nfsstat Displays information about a machine’s ability to receive
calls.

/usr/sbin/rpcgen Generates C code to implement an RPC protocol (delivered
by bos.net.nfs.server fileset).

Commands Description
44 Securing NFS in AIX

Chapter 3. Enhanced security in NFS V4

This chapter describes the enhanced security options that are available in
NFS V4 as released with the AIXL Version 5.3 operating system.

It starts by introducing general terminology, and then goes on to describe specific
features.

The chapter includes the following sections:

� General security concepts and terminology

� NFS V4 user/group identification

� NFS V4 user authentication

� NFS V4 user authorization

� NFS V4 host identification

� NFS V4 host authentication

� NFS V4 host authorization

3

© Copyright IBM Corp. 2004. All rights reserved. 45

3.1 General security concepts and terminology
This section lays a foundation for the rest of the chapter by introducing
terminology that will that will be used throughout the chapter.

3.1.1 Broad security categories
The topic of security can be very broad and far-reaching. A discussion of security
measures might include items in the following categories:

Physical security Measures taken to control physical access to a facility or
resource. Padlocks, fences, guards, and dogs are
examples of physical security measures.

Personnel security Measures taken to help ensure that the people who are
granted access to secured resources are reliable and are
not likely to compromise the security of those resources.
Security clearances and photo ID badges are examples of
personnel security measures.

Information security Measures taken to protect important information from
unauthorized disclosure, tampering, or destruction.
Passwords, encryption, and file access permissions are
examples of information security measures.

We will be talking in this chapter primarily about what we call information
security, because NFS V4 is about sharing information. Organizations will not be
able to properly protect their information resources without also implementing
physical and personnel security measures, but we will not address those
measures in this document.

3.1.2 Information security components
In an NFS V4 context, information security falls into the following areas:

Identification Uniquely establishes the identity of information system
users, hosts, and services. Answers questions such as,
“Who are the users or hosts that are trying to access
shared data on my server?”

Authentication Confirms the identity of a system user, host, or service.
Answers questions such as, “Is this user really who he or
she claims to be?”
46 Securing NFS in AIX

Authorization Controls what shared information each system user or
other entity can access. Answers questions such as,
“Does this user have the right to access a shared data
object on my server?

3.1.3 RPC security flavors
NFS V4 uses Sun’s Remote Procedure Call (RPC) protocol to communicate over
the network between the client and the server. The IBM implementation enables
you to use three different RPC security flavors:

� Basic UNIX security (AUTH_SYS, aka AUTH_UNIX)
� Diffie-Hellman security (AUTH_DH, aka AUTH_DES)
� RPCSEC_GSS security as defined in RFC2203

3.1.4 RPCSEC_GSS protection levels
When using RPCSEC_GSS security with RPCs, there are three levels of
protection that can be applied to the RPCs as they are transmitted over the
network between server and client:

Authentication Validates the identity of RPC sender

Integrity Validates that the contents of the RPC were not changed
during transmission (also includes authentication)

Privacy Prevents unauthorized viewing of data while it is in transit
between client and server (also includes authentication
and integrity)

Keep in mind that each increasing level of protection comes with a performance
penalty. Choose the minimum level that meets your data protection requirements.

3.1.5 RPCSEC_GSS protection mechanisms
The NFS V4 standard (RFC 3530) requires that NFS implementations support
three different RPCSEC_GSS mechanisms:

� Kerberos V5 (RFC1964)

� SPKM-3/LIPKEY (RFC2847)

� SPKM-3 on its own (RFC2847/RFC2025), for situations where the initiator
(the client) is anonymous or has its own certificate.

In AIX 5.3, IBM has implemented Kerberos V5, but not SPKM/LIPKEY at this
point in time.
 Chapter 3. Enhanced security in NFS V4 47

IBM offers several forms of encryption with its Kerberos V5 implementation,
among which are single DES and triple DES.

3.1.6 Looking ahead to the rest of the chapter
The rest of this chapter compares different options for identification,
authentication, and authorization, which are different for hosts and users. We
discuss users first, and then hosts.

We use various Kerberos-related terms throughout this chapter. See Appendix A,
“Kerberos” on page 243 for a description of Kerberos and its related terms.

3.2 NFS V4 user/group identification
In this section, we discuss three different methods for managing user and group
identities: via the standard UNIX /etc/passwd and /etc/group files, via Sun
Microsystems’ Network Information Services (NIS), and via the Lightweight
Directory Access Protocol (LDAP) schema defined by RFC2307.

We also discuss how NFS V4 determines a user’s identity under AUTH_SYS
authentication and RPCSEC_GSS (Kerberos) authentication.

3.2.1 User identity management options
UNIX implementations typically use a 32-bit integer to identify users and groups.
These integers are referred to as UIDs for users and GIDs for groups. User and
group ownership for system processes and file system objects are maintained in
UID/GID form. NFS V2 and NFS V3 also use these UIDs and GIDs to identify
users and groups.

People do not usually work directly with the numeric IDs; they work with text user
and group names that are normally easier to associate with an actual individual
or group. When presenting information about process and file ownership, the
system translates the numeric IDs into the names. The relationship between the
names and the IDs is maintained in a user registry, which can be standard UNIX,
NIS, or LDAP.

Note: Triple DES encryption gives the best protection, but you may need to
use single DES to get better performance and interoperability.
48 Securing NFS in AIX

Standard UNIX user registry
In standard UNIX, user-name-to-ID mappings are contained in the /etc/passwd
file, and group-name-to-ID mappings are contained in the /etc/group file.

All but the smallest organizations will want to use a shared user registry, rather
than maintaining separate /etc/passwd and /etc/group files on all hosts. Here is
one reason why. All clients using data stored on an NFS server directory should
use the same identifier to represent the same user or group. This is necessary to
maintain consistent file ownership. For example, in an NFS V2 and NFS V3
environment, if UID 100 is Joe on one NFS client and Mary on another client,
NFS files created by Joe from the first client will show as being owned by Mary
on the 2nd client, and vice versa. To avoid this, the separate /etc/passwd and
/etc/group files will need to be kept in sync on all NFS clients that access data on
a common NFS server. This can be a very expensive and error-prone task.

NIS user registry
Sun Microsystems developed Network Information Services (NIS) to help
centrally manage UID/GID- to-name mappings. With NIS, the user and group
identity information is maintained in one place and is distributed to all of the
machines participating in an NIS domain. Having all of an organization’s NFS
servers and clients participate in an NIS domain helps keep identity mappings
consistent.

NIS has been widely used in conjunction with NFS, and it can work well for
medium-sized organizations. It becomes problematic, however, when a large
organization requires multiple NIS domains, or when two different organizations
merge. Consolidating two different NIS domains can be a very difficult task.

More information about NIS can be found on Sun Microsystems’ Web site:

http://www.sun.com

LDAP user registry
Directory services based on the Lightweight Directory Access Protocol (LDAP)
can also be used to maintain user and group identities. LDAP-based directories
are typically more scalable and secure than NIS. RFC2307 describes an LDAP
schema that provides NIS-like functionality.

IBM Tivoli Directory Server is the IBM implementation of LDAP-based directory
services. As of Version 5.1, the Tivoli Directory Server supports RFC2307 user
and group identification. More information is available about the Tivoli Directory
Server on the IBM Web site at:

http://www.ibm.com/software/tivoli/products/directory-server
 Chapter 3. Enhanced security in NFS V4 49

http://www.sun.com
http://www.ibm.com/software/tivoli/products/directory-server

3.2.2 User/group identities and NFS V4
NFS V4 handles user and group identities very differently from previous versions.
NFS V2 and NFS V3 pass UIDs and GIDs between the client and server,
whereas NFS V4 passes string names in the form user@nfs_domain or
group@nfs_domain. We will describe identity mapping under three conditions:

� Single NFS domain using AUTH_SYS security
� Single NFS domain using Kerberos security
� Multiple NFS domains

We will use two sample operations in each case:

� Creating a file
� Requesting file ownership

Notes:

1. When we say “NFS” throughout the rest of this section, we mean NFS V4.

2. The examples in this section are not intended to depict everything that
goes on in an NFS transaction. They are simplified to convey pertinent
concepts.
50 Securing NFS in AIX

Single NFS domain using AUTH_SYS security
Figure 3-1 shows how user information is passed from the NFS client to the
server when creating a file.

Figure 3-1 Creating a file under AUTH_SYS security

The ownership of the requesting user process is in the form of UID and GID. The
NFS client translates the UID into a user name string and translates the GID into
a group name string. These strings are then sent across to the server. The server
checks to make sure that the NFS domains in the request match its own NFS
domain. (If they didn’t match, extra steps would be required. See the multiple
domain discussion below.) The server then translates the strings back to
UID/GID using its user registry, which may not be the same as the client’s, and
stores the UID/GID as ownership attributes of the file being created.
 Chapter 3. Enhanced security in NFS V4 51

Figure 3-2 shows how the user information is passed from the NFS server to the
client when the client has requested ownership information for an existing file.

Figure 3-2 Getting file ownership under AUTH_SYS security

The ownership information that is stored with the file is in the form of UID and
GID. The NFS server translates the UID into a user name string and the GID into

Important: For ownership to be transferred properly between client and
server, the server must be able to convert the user and group names into IDs.
If the server cannot do that, it will make the file owned by the user nobody, or
the group nobody, or both. This is a key difference between NFS V4 and earlier
versions. Prior to NFS V4, the server just took the provided UID/GID
information and placed it in the file attributes. It did not have to do any
translation.
52 Securing NFS in AIX

a group name string. It then checks to make sure that its NFS domain is the
same as the requester’s NFS domain. In this case they are the same, so the
server can go ahead and send the owner and group strings across to the client.
The client translates the strings back to UID/GID using its user registry, which
may not be the same as the server’s, and reports that information back to the
requesting process.

The ls -n output would appear similar to this:

-rw-r--r-- 1 200 20 255 Aug 11 11:05 myfile

If an ls -l command was issued, the client would take the UID/GID information
and translate it back to names, resulting in output similar to:

-rw-r--r-- 1 sally hr 255 Aug 11 11:05 myfile

Single NFS domain using Kerberos security
Under Kerberos security, the NFS server does not take the client user’s identity
from the user and group strings in the NFS request. Instead, it determines the
user’s identity from the Kerberos principal that is part of the RPCSEC_GSS call.
The principal identity is in the form user@KERBEROS_REALM. (The realm
name is typically represented in all capital letters.)

Figure 3-3 on page 54 shows how an NFS server determines ownership when an
NFS client requests to create a file in a directory that is under Kerberos security.
 Chapter 3. Enhanced security in NFS V4 53

Figure 3-3 Creating a file under RPCSEC_GSS (Kerberos) security

The server takes the requesting principal’s realm and maps it to an NFS domain
via the contents of the /etc/nfs/realm.map file. It then checks to see whether the
resulting NFS domain matches its own NFS domain. In this case, the domains
match, so the server then looks up the user name in its user registry to determine
the UID. The server also gets the user’s GID from its user registry, not from the
NFS request. It then places the UID and GID in the newly created file’s attributes.
54 Securing NFS in AIX

Figure 3-4 on page 56 shows what happens when an NFS client requests an
NFS server for ownership information for a file that is in a Kerberos-protected
directory.

Attention: Determining the group ownership under Kerberos is an important
difference from how NFS operates under AUTH_SYS security. With
AUTH_SYS, the server gets the group information from the client via the NFS
request. With Kerberos, the server only gets the user identity from the client. It
gets the group information from the server’s user registry.

Figure 3-3 illustrates this. Although the user sally’s primary group is eng on the
client, the created file is owned by the group hr because it is sally’s primary
group on the server. Using ls -l on the file on both the server and the client will
show that it is owned by the ‘hr’ group.
 Chapter 3. Enhanced security in NFS V4 55

Figure 3-4 Getting file ownership under RPCSEC_GSS (Kerberos) security

The process is the same as the AUTH_SYS process in Figure 3-2 on page 52,
except (again) that the client user’s identity is determined from the Kerberos
principal accompanying the request. The NFS server translates the principal’s
realm to an NFS domain to check to make sure that the requester’s domain is the
56 Securing NFS in AIX

same as the server’s domain. Note that the file ownership information is still
communicated through the NFS protocol.

Multiple NFS domains
If the client’s NFS domain does not match the server’s, name mapping must be
made between the domains. User and group names in the client’s domain must
be mapped to user and group names in server’s domain. This can be done via
Enterprise Identity Mapping (EIM) that is available for free with AIX. (It is
available on the base AIX CD, in the fileset bos.eim.rte.) See the IBM Redbook
Windows-based Single Signon and the EIM Framework on the IBM ̂
iSeries Server, SG24-6975, for an overview of EIM and a description of how to
configure it for use with the IBM Network Authentication Service. Although the
book is written for iSeries™ servers, the concepts also apply to pSeries® servers
and AIX.

If EIM is not in place, the NFS server will view the client identities as foreign, and
it will map them to the user/group nobody.

Figure 3-5 on page 58 shows the process of creating a file under AUTH_SYS
when EIM is used.
 Chapter 3. Enhanced security in NFS V4 57

Figure 3-5 Creating a file under AUTH_SYS security: multiple domains

Note the extra EIM step after the server determines that the client’s NFS domain
does not match its own. The server requests from EIM which nfsdom1 user
matches sally@nfsdom2, and which nfsdom1 group matches hr@nfsdom2. The
figure shows the user and group names being the same between the two
domains, but it is possible for them to be different. The user name
sally@nfsdom2 might have mapped to the name sally2@nfsdom1, or it might
even have mapped to mary@nfsdom1.

The other scenarios presented earlier in this section all also require the
additional EIM step if the client’s NFS domain does not equal the server’s.
58 Securing NFS in AIX

3.3 NFS V4 user authentication
By default, NFS uses the AUTH_SYS method to authenticate user identities.
Alternatively, you can use RPCSEC_GSS (Kerberos) to authenticate users.

3.3.1 AUTH_SYS user authentication
Under the AUTH_SYS security flavor, the user is authenticated at the client,
usually via a logon name and password. The NFS server trusts the user and
group identities presented by its clients. If someone gains administrative control
of an NFS client, or has control of a machine pretending to be a valid NFS client
via IP address spoofing, it is easy to masquerade as any valid NFS user.

For example, if tight physical security cannot be maintained on a network, it
would be easy for someone to bring in a Linux laptop, set the IP address to be
the same as a valid NFS client, and connect the laptop to the network using the
valid client’s connection. When connected, the person can set up any user
account desired on the laptop and gain access to any of the exported data on an
NFS server.

3.3.2 RPCSEC_GSS user authentication using Kerberos
This section first gives a little background about Kerberos in general, and then it
describes how Kerberos is used in NFS.

What is Kerberos?
The AIX 5L Version 5.3 Security Guide describes Kerberos as a network
authentication service that provides a means of verifying the identities of
principals (users and hosts) on physically insecure networks. Kerberos provides
mutual authentication, data integrity, and privacy under the realistic assumption
that network traffic is vulnerable to capture, examination, and substitution.

Kerberos tickets are credentials that verify a principal’s identity. There are two
types of tickets: ticket-granting and service. The ticket-granting ticket is for the
initial identity request. When logging into a host system, a user needs something
that verifies his or her identity, such as a password or a token. This password or
token is used to obtain a ticket-granting ticket, which can then be used to request
service tickets for specific services. This two-ticket method is the called the
Kerberos third-party authentication model.

Attention: Because of this vulnerability, you should not use AUTH_SYS user
authentication if controlling access to your data is important.
 Chapter 3. Enhanced security in NFS V4 59

The trusted third-party or intermediary in Kerberos is called the Key Distribution
Center (KDC). The KDC issues all of the Kerberos tickets to the clients. Tickets
have a predetermined lifetime and have to be renewed periodically.

The Kerberos database keeps a record of every principal; the record contains the
name, private key, expiration date of the principal, and some administrative
information about each principal. This database is maintained on the master
KDC, and it can be replicated to one or more replica KDCs.

See Appendix A, “Kerberos” on page 243 for more information about what
Kerberos is and how it works.

How does NFS use Kerberos?
When an NFS client and server are using Kerberos 5 (krb5) authentication, the
client and server must establish a security context for NFS requests. The security
context is a data structure that indicates that the client and server have
completed a mutual authentication procedure. The context also contains the
encryption keys that will be used for protecting exchanged data, if such
protection has been requested. The security context has a lifetime and may need
to be refreshed by the client from time to time. The client and server each
maintain a cache of security contexts, one context per user/host combination.

A walkthrough of the authentication process helps explain how it works.
Figure 3-6 on page 61 illustrates the steps involved in authenticating an NFS
user request.
60 Securing NFS in AIX

Figure 3-6 RPCSEC_GSS authentication flow

Here is a description of the authentication steps:

1. An authenticated user process on the NFS client attempts an operation on a
Kerberos-protected NFS object.

2. The client NFS has no current context for the user/server combination. It calls
out to the gssd to obtain an RPC security context with the target service (the
server NFS). It gives the gssd the name of the service (machine principal of
the NFS server) and the user’s identity.

3. If the user has valid Kerberos credentials, the gssd then contacts the KDC to
initiate context establishment to the target service.

4. If the service is known, the KDC returns an opaque token to the client gssd.
This token will authenticate the user to the target.

5. The gssd returns the token to the client NFS.

6. The client NFS then sends the token to the server NFS in a NULL RPC call to
request context establishment.
 Chapter 3. Enhanced security in NFS V4 61

7. The server NFS passes the context token to the server gssd in a request to
accept the context.

8. The server gssd passes the token to the KDC to verify the requesting user’s
identity.

9. If the KDC accepts the token, it returns another token to the server gssd and
a context handle. This token will authenticate the server’s identity to the
requesting client.

10.The server gssd returns this token to the server NFS. The server NFS now
has established context.

11.The server NFS returns the accept token to the client in response to the NULL
RPC call.

12.The client passes the accept token to the client gssd in a second call to
initiate the context.

13.The client gssd calls the KDC to verify the server’s token.

14.If the KDC accepts the token, it returns a context handle to the client gssd.

15.The client gssd returns the context handle to the client NFS. The client now
has established context.

16.The original NFS operation can now proceed under the established context.

17.The NFS server responds to the original operation.

18.Results of the original operation are returned to the user process.

3.4 NFS V4 user authorization
User authorization in an NFS context means controlling user access to
directories and files in the exported file systems. This section describes two ways
to control this access: via standard UNIX file permissions and via NFS V4
Access Control Lists (ACLs).

ACLs provide for more granular access control than standard UNIX file
permissions. One of the main differences is in group access. Whereas standard
UNIX permissions only provide access control for one group (the group that owns
the file), ACLs enable different access permissions to be specified for multiple
groups. ACLs also allow access permissions to be specified at a user level, but

Note: Although you can also use AIX ACLs (known in AIX 5.3 as the AIXC
ACL type), they are only supported on AIX systems, and they have not been
widely adopted. We do not discuss them in detail in this document. For more
about AIXC ACLs, see the AIX 5L Version 5.3 Security Guide, SC23-4907.
62 Securing NFS in AIX

controlling access on a per-user basis is usually not practical for organizations of
any size.

3.4.1 Standard UNIX file permissions
The standard UNIX file permission model consists of granting read, write, and
execute access to three categories of users:

User The user who owns the file
Group The group that owns the file
Other Everyone else

This model frequently is inadequate when applied to a real-world organization
structure. Individuals often operate in multiple roles, or different individuals
operating in the same role may have attributes that require different data access.

For example, access to data is sometimes restricted based on company
affiliation. Two people working on an engineering project might be from different
companies. Although they both can have access to much of the engineering
data, some of that data may be restricted to employees of one company and not
the other. This sort of granular access control is very difficult, if not impossible, to
implement using standard UNIX file permissions.

3.4.2 AIXC ACLs
An AIXC ACL has two parts:

� Base permissions, which map directly to the standard user/group/other UNIX
file permissions

� Extended permissions, which enable you to control access to other specific
users and groups

Here is an example of an AIXC ACL (in aclget format) that has extended
permissions disabled:

*
* ACL_type AIXC
*
attributes: SGID
base permissions
 owner(root): rwx
 group(system): r-x
 others: r-x
extended permissions
 disabled
 Chapter 3. Enhanced security in NFS V4 63

Here is an example of an AIXC ACL that has extended permissions enabled:

*
* ACL_type AIXC
*
attributes: SGID
base permissions
 owner(root): rwx
 group(system): r-x
 others: r-x
extended permissions
 enabled
 permit rw- u:sally
 deny rwx g:sales

AIXC ACLs from an NFS client’s viewpoint
AIXC ACLs are supported on both NFS V3 and NFS V4 AIX clients. To be able to
see and modify AIXC ACLs from an NFS client, you must mount your file
systems with the acl option (noacl is the default).

There is one aspect in which an NFS V4 client handles AIXC ACLs differently
from an NFS V3 client. An NFS V4 client depicts an AIXC ACL as an NFS V4
ACL if the AIXC ACL has extended permissions disabled, or if extended
permissions are enabled but there are no entries in the extended permissions
list. If the AIXC ACL has extended permissions enabled and there are entries in
the extended permissions list, the NFS V4 client shows it as an AIXC ACL. An
NFS V3 client always shows an AIXC ACL as an AIXC ACL.

For example, assume a file has the following AIXC ACL on the server:

*
* ACL_type AIXC
*
attributes:
base permissions
 owner(root): rw-
 group(system): r--
 others: r--
extended permissions
 disabled

Then the NFS V4 client will show the ACL as:

*
* ACL_type NFS4
*
*
* Owner: root
* Group: system
64 Securing NFS in AIX

*
s:(OWNER@): a rwpRWaAdcCs
s:(OWNER@): d xo
s:(GROUP@): a rRadcs
s:(GROUP@): d wpWxACo
s:(EVERYONE@): a rRadcs
s:(EVERYONE@): d wpWxACo

The AIX 5L Version 5.3 Security Guide, SC23-4907, has more about AIXC ACLs.

3.4.3 NFS V4 ACLs: description
NFS V4 ACLs are similar to Windows NTFS ACLs, but they are not identical. The
developers of the NFS V4 standard chose the Windows ACLs model over POSIX
ACLs because the Windows ACL model is both richer and more widely deployed.
Although many UNIX vendors implemented ACLs based on the POSIX Draft
ACL specification, those implementations tended to be proprietary, and the
POSIX specification was never standardized.1

NFS V4 ACL format
According to the NFS V4 protocol specification, an NFS V4 ACL is an array of
Access Control Entries (ACEs) that have four elements: a type, a set of flags, an
access bit mask, and an identity. As implemented in the AIX JFS2 EAv2 file
system, each ACL can be a maximum of 64 KB.

The textual representation of an NFS V4 ACL consists of a list of Access Control
Entries (ACEs), one per line. Each ACE has four elements in the following format:

IDENTITY ACE_TYPE ACE_MASK ACE_FLAGS

IDENTITY has the format:

IDENTITY_type:(IDENTITY_name or IDENTITY_ID or IDENTITY_who):

Table 3-1 on page 66 lists possible values for IDENTITY_type.

1 Pawlowski, Brian, Spencer Shepler, Carl Beame, Brent Callaghan, Michael Eisler, David Noveck,
David Robinson, Robert Thurlow. The NFS Version 4 Protocol, SANE Conference, NL, 2000.
http://www.nluug.nl/events/sane2000/papers/pawlowski.pdf.

Note: In order to use NFS V4 ACLs, the server file system must support them.
As of this writing, AIX5L Version 5.3 only supports NFS V4 ACLs in two file
system types: Enhanced Journaled File System (JFS2) with the extended
attribute format set to Version 2 (EAv2), and General Parallel File System
(GPFS). For more information about NFS V4 ACL support, see the AIX 5L
Version 5.3 Security Guide, SC23-4907, and the AIX 5L Differences Guide
Version 5.3 Edition, SG24-7463.
 Chapter 3. Enhanced security in NFS V4 65

Table 3-1 ACE IDENTITY_type values

IDENTITY_name is the user or group name.

IDENTITY_ID is the user or group numeric ID.

IDENTITY_who is a special who string that should be understood universally
rather than in the context of a particular NFS domain. The string can be one of
those shown in Table 3-2.

Table 3-2 ACE special who strings supported by AIX

The additional special who strings specified in RFC 3530 (shown in Table 3-3)
are not currently supported in AIX.

Table 3-3 ACE special who strings not supported in AIX

ACE_TYPE is a single character. Table 3-4 on page 67 shows possible values.

IDENTITY_type Description

u user (IDENTITY_name or IDENTITY_ID)

g group (IDENTITY_name or IDENTITY_ID)

s special who string (IDENTITY_who)

IDENTITY_who Description

OWNER@ The owner of the file

GROUP@ The group associated with the file

EVERYONE@ The world

IDENTITY_who Description

ANONYMOUS@ Accessed without any authentication

AUTHENTICATED@ Any authenticated user (opposite of ANONYMOUS)

INTERACTIVE@ Accessed from an interactive session

NETWORK@ Accessed via the network

DIALUP@ Accessed via a dial-up connection

BATCH@ Accessed from a batch job

SERVICE@ Accessed from a system service
66 Securing NFS in AIX

Table 3-4 ACE_TYPE values

ACE_MASK is a set of permission flags (permission bits) that can be combined
without any separator. Table 3-5 shows possible flags. Note that the flag values
are case-sensitive.

Table 3-5 ACE_MASK values

ACE_TYPE Description

a Allow access

d Deny access

l Generate a system alarm when an access is attempted
(currently not supported in AIX)

u Generate an audit log entry when an access is attempted
(currently not supported in AIX)

ACE_MASK RFC 3530 name Description

r READ_DATA or
LIST_DIRECTORY

Permission to read the data of the file or
list the contents of the directory

w WRITE_DATA or
ADD_FILE

Permission to modify the file’s data or add
a new file to the directory

p APPEND_DATA or
ADD_SUBDIRECTORY

Permission to append data to the file or
add a new subdirectory to the directory

R READ_NAMED_ATTRS Permission to read the named attributes
of the file or directory

W WRITE_NAMED_ATTRS Permission to write the named attributes
of the file or directory

x EXECUTE Permission to execute the file or traverse
the directory

D DELETE_CHILD Permission to delete files or
subdirectories from within the directory

a READ_ATTRIBUTES Permission to read basic attributes
(non-ACLs) of the file or directory

A WRITE_ATTRIBUTES Permission to change basic attributes
(non-ACLs) of the file or directory

d DELETE Permission to delete the file or directory

c READ_ACL Permission to read the ACL of the file or
directory
 Chapter 3. Enhanced security in NFS V4 67

ACE_FLAGS (optional) is a combination of one or more of the following two-letter
flags without any separator. Four of the currently defined flags have to do with
ACL inheritance (Table 3-6), and the other two have to do with auditing
(Table 3-7). The inheritance flags only have meaning when applied to a directory.
Auditing flags only have meaning when used with the audit or alarm ACE types.

Table 3-6 ACE_FLAG inheritance-related values

Table 3-7 ACE_FLAG auditing-related values

C WRITE_ACL Permission to change the ACL of the file
or directory

o WRITE_OWNER Permission to change the owner of the file
or directory

s SYNCHRONIZE Permission to access file locally at the
server with synchronous reads and writes

ACE_FLAG RFC 3530 name Description

fi FILE_INHERIT Indicates that this ACE should be added to each
newly created non-directory file.

di DIRECTORY_
INHERIT

Indicates that this ACE should be added to each
newly created subdirectory.

oi INHERIT_ONLY Indicates that this ACE does not apply to the
current directory; it is only to be added to newly
created files/subdirectories as specified by the
above two flags.

ni NO_
PROPAGATE_
INHERIT

Indicates that this ACE should be added to newly
created files/subdirectories immediately under
the directory, but subdirectories should not pass
it on to their children.

ACE_FLAG RFC 3530 name Description

sf SUCCESSFUL_
ACCESS_
ACE_FLAG

Generate audit or alarm when an access attempt
succeeds.

ff FAILED_
ACCESS_
ACE_FLAG

Generate audit or alarm when an access attempt
fails.

ACE_MASK RFC 3530 name Description
68 Securing NFS in AIX

NFS V4 ACL permission restrictions
Some permission bits are interrelated and must be used together under the
following circumstances:

� The WRITE_DATA (w) and APPEND_DATA (p) bits must be specified
together in a file’s ACE, or in a directory’s ACE that has the FILE_INHERIT
flag set.

Special user permissions
In NFS V4, two classes of users have special access to files:

� The UNIX super user (UID=0) is allowed all access permissions, regardless
of the ACE permission bit settings. (The only exception to this is execute
permission.) This special access applies to processes running on the NFS
server and processes running on NFS clients that have been given root
access via the exportfs command.

� The owner of a file always has the permissions READ_ACL, WRITE_ACL,
READ_ATTRIBUTES, and WRITE_ATTRIBUTES, regardless of the actual
settings in the ACL.

3.4.4 NFS V4 ACLs: ACL evaluation
In order to properly use NFS V4 ACLs, it is important to understand how they are
evaluated when determining whether an access request will be granted or
denied.

Per the RFC 3530 NFS V4 standard and the AIX 5L Version 5.3 Security Guide,
an AIX NFS V4 server evaluates the ACL list from the top down, applying the
following rules:

� Only ACEs that have a who that matches the requester are considered. The
credentials of the requester are not checked while processing the ACE with
special who EVERYONE@.

� Each ACE is processed until all of the bits of the requester’s access have
been allowed or at least one of the requested bits not previously allowed has
been denied.

� When a permission bit has been allowed, it is no longer considered in the
processing of later ACEs.

� If a deny ACE_TYPE is encountered where the ACE_MASK has bits in
common with not-yet-allowed bits in the request, access is denied, and the
remaining ACEs are not processed.

� If the entire ACL has been processed and some of the requested access bits
still have not been allowed, access is denied.
 Chapter 3. Enhanced security in NFS V4 69

NFS V4 ACL evaluation examples
The following examples help illustrate ACL evaluation. For more examples, see
the AIX 5L Version 5.3 Security Guide.

Given the following ACL on a file:

*
* ACL_type NFS4
*
*
* Owner: sally
* Group: staff
*
g:sales: d wp
s:(OWNER@): a rRWDaAdcCs
s:(OWNER@): d wpo
s:(GROUP@): a rwpRxadcs
s:(GROUP@): d WDACo
s:(EVERYONE@): a rwpRxadcs
s:(EVERYONE@): d WDACo

If the user sally requests READ_DATA (r) and WRITE_DATA (w) access, the ACL
evaluation will proceed as follows:

� The s:(OWNER@):a... ACE is processed because sally owns the file.

– READ_DATA is allowed because that bit is set in the ACE_MASK.

– WRITE_DATA is not yet allowed because it is not set in the ACE_MASK.

� The s:(OWNER@):d... ACE is processed because sally owns the file.

– WRITE_DATA is denied because that bit is set in the ACE_MASK, and
WRITE_DATA has not yet been allowed by a previous ACE.

� No further ACEs are processed, and the requested access is denied.

Notes:

1. In the previous example, even though the GROUP@ and EVERYONE@
ACEs allow WRITE_DATA access, Sally is denied WRITE_DATA access
because it is specifically denied by the owner ACE.

2. The ACE order is important. If the group allow ACE had appeared in the list
before the owner deny ACE, then Sally would be allowed write access to
the file.
70 Securing NFS in AIX

If the user sally, who is a member of the group staff, requests READ_DATA (r)
and EXECUTE (x) access, the ACL evaluation will proceed as follows:

� The s:(OWNER@):a... ACE is processed because sally owns the file.

– READ_DATA is allowed because that bit is set in the ACE_MASK.

– EXECUTE is not yet allowed because it is not set in the ACE_MASK.

� The s:(OWNER@):d... ACE is processed because sally owns the file.

– EXECUTE is not yet denied because it is not set in the ACE_MASK.

� The s:(GROUP@):a... ACE is processed because sally is a member of the
group staff, which owns the file.

– EXECUTE is allowed because that bit is set in the ACE_MASK.

� All requested permission bits have now been allowed. No further ACLs are
processed, and the requested access is granted.

If the user joe, who is a member of the group sales, requests READ_DATA (r)
and WRITE_DATA (w) access, the ACL evaluation will proceed as follows:

� The g:sales:d... ACE is processed because joe is a member of the group
sales.

– READ_DATA is not denied because it is not set in the ACE_MASK.

– WRITE_DATA is denied because that bit is set in the ACE_MASK, and
WRITE_DATA has not yet been allowed by a previous ACE.

� No further ACEs are processed, and the requested access is denied.

If joe requests just READ_DATA (r) access, the ACL evaluation will proceed as
follows:

� The g:sales:d... ACE is processed because joe is a member of the group
sales.

– READ_DATA is not denied because it is not set in the ACE_MASK.

� The s:(EVERYONE@):a... ACE is processed.

– READ_DATA is allowed because it is set in the ACE_MASK.

� All requested permission bits have now been allowed. No further ACLs are
processed, and the requested access is granted.

Relationship between NFS V4 ACLs and UNIX permissions
Those familiar with standard UNIX read (r), write (w), and execute (x) permission
bits may want to know how these bits correlate with the bits in the ACE_MASK.
As you can probably tell from the ACE_MASK definitions above, the r, w, and x
permission bits basically provide the same access as the standard UNIX
permission bits.
 Chapter 3. Enhanced security in NFS V4 71

For example, as with UNIX permissions, the w permission bit in a directory’s ACL
has to do with creating, deleting, and renaming files and subdirectories within
that directory, rather than changing the contents of those files and subdirectories.

The difference comes into play when mapping the rwx bits to user (owner),
group, and other. This mapping is unspecified in RFC 3530. Here is an example
of the mapping we observe in AIX.

Consider a file with the following ACL:

*
* ACL_type NFS4
*
*
* Owner: sally
* Group: staff
*
s:(OWNER@): a cCs
s:(OWNER@): d o
s:(GROUP@): a rRxadcs
s:(GROUP@): d wpWDACo
s:(EVERYONE@): a rwpRxadcs
s:(EVERYONE@): d WDACo

Applying ls -l to the file shows:

-rwxr-xrwx 1 sally staff 0 Jul 30 11:20 testfile

Initially, you might think that the bits will map straight from OWNER@ to user,
GROUP@ to group, and EVERYONE@ to other. As you can see from the
example, this is not the case. Here you see that the user permissions show as
rwx, where the s:OWNER@:a ACE has none of those bits set. Furthermore, even
though the ls -l output makes it look like the user sally has write access to the
file, she actually does not. Evaluating the ACEs from top down, write access is
denied by the s:GROUP@:d entry.

Based on this, we must draw the conclusion that you cannot use the standard
UNIX permissions bits to reliably predict access when using NFS V4 ACLs.

3.4.5 NFS V4 ACLs: administration
In AIX, NFS V4 ACLs (and AIXC ACLs) can be administered from either the NFS
server or an NFS V4 client via the command line or via the AIX Web-based
System Manager (WSM).
72 Securing NFS in AIX

Manipulating ACLs via the command line
ACLs can be administered using the following commands:

aclget Writes the textual representation of an ACL to standard
output or to a named file.

aclput Replaces the contents of an ACL from a textual
representation provided either from standard input or from
a named file.

acledit Retrieves the ACL’s textual representation into a text
editor (specified by the EDITOR environment variable)
and then replaces the ACL from the modified text.

aclconvert Converts an ACL’s format from either AIXC to NFS4 or
from NFS4 to AIXC. The translation is not necessarily
straightforward. Use this with caution, and make sure that
the end result is what you intended.

aclgettypes Returns a list of the ACL types supported by the file
system that contains a given file or directory.

Manipulating ACLs via WSM
You can also use the AIX Web-based System Manager (WSM) to manipulate
ACLs. This may be easier for novice users to grasp, because it is GUI-based. We
think, however, that WSM will be useful for only the most basic operations and
that experienced administrators will mainly use the command line utilities.

Here is an example of how to use WSM to change an ACL:

1. Start up the WSM console and double-click the File Systems icon. Then
double-click the Overview and Tasks icon. You will see a window that looks
like Figure 3-7 on page 74.

Note: The aclconvert and aclgettypes commands are new in AIX 5L V5.3.
 Chapter 3. Enhanced security in NFS V4 73

Figure 3-7 WSM File Systems → Overview and Tasks screen

2. Choose Access Control List either from the main window or from the
Filesystems menu. This opens a window like Figure 3-8.

Figure 3-8 WSM ACL file or directory name prompt

3. Either: Type in the full path name of the file or directory whose ACL you would
like to modify, or click Browse to choose the file or directory from the GUI.
After you have entered the name, either type Enter or click Next.
74 Securing NFS in AIX

4. This opens a window similar to Figure 3-9. Make sure that Edit ACL is
selected and click Next.

Figure 3-9 WSM ACL operation selection
 Chapter 3. Enhanced security in NFS V4 75

5. The window shown in Figure 3-10 opens. Select the ACE you would like to
change and click Edit.

Figure 3-10 WSM ACL edit screen
76 Securing NFS in AIX

6. The ensuing window has two tabs: General and Access Mask. Under the
General tab, you can set the user type and identity, the ACE type, and the
ACE flags (inheritance, audit and alarm). If you select the Access Mask tab,
you will see a window like Figure 3-11.

Figure 3-11 WSM ACE mask screen

7. Make sure that the selected access mask entries are the ones you want and
click OK. You will be returned to the ACL edit screen (Figure 3-10 on
page 76).

8. Repeat steps 5 and 6 for other ACEs that you want to change. After you have
finished with all of the ACEs that you want to change, click OK on the ACL
edit screen. You will see a pop-up window that indicates the status of the
operation. When you are done viewing the status, click Close on that window.

This concludes the WSM example.

Use of the chmod command
When working with files and directories that have NFS V4 ACLs, chmod can only
be used to set UNIX permission bits that are outside of what is stored in the ACL.
These are the setuid bit, the setgid bit, and the sticky bit (Table 3-8 on page 78).
 Chapter 3. Enhanced security in NFS V4 77

Table 3-8 Chmod operations compatible with NFS V4 ACLs

ACL inheritance and umask
Does the UNIX umask have any impact on inherited ACL settings when creating
a new file or directory? The answer is no. The umask has no effect on inherited
ACL settings when using NFS V4 ACLs.

For example, if a directory has the following ACL, a file created in that directory
will have the same ACL, even if the umask is set to 777.

*
* ACL_type NFS4
*
*
* Owner: root
* Group: system
*
s:(OWNER@): a rwpRWxDaAdcCs fidi
s:(OWNER@): d o fidi
s:(GROUP@): a rwpRxadcs fidi

Chmod command Description

chmod u+s
chmod u-s

Set or unset the setuid bit.

chmod g+s
chmod g-s

Set or unset the setgid bit.

chmod +t
chmod -t

Set or unset the sticky bit.

Important: Using the chmod command to manipulate the rwx permission bits,
either in octal form (for example, 755) or in symbolic form (u+x) replaces the
NFS V4 ACL with an AIXC ACL, wiping out the original permissions that were
on the file or directory.

Never use the octal form of the chmod command if you are using NFS V4
ACLs. Even if you think that you are leaving the rwx bits alone, using the octal
form will replace the NFS V4 ACL with an AIXC ACL.

Note: If you use chmod to manipulate rwx permission bits on an NFS client and
then (again on the client) run aclget on the file, the ACL will still appear to be
an NFS V4 ACL. However, it will be an AIXC ACL on the NFS server. The NFS
protocol translates AIXC ACLs that have extended permissions disabled to
look like NFS V4 ACLs at the client.
78 Securing NFS in AIX

s:(GROUP@): d WDACo fidi
s:(EVERYONE@): a rwpRxadcs fidi
s:(EVERYONE@): d WDACo fidi

ACL inheritance and move vs. copy
Table 3-9 describes the impact that the UNIX mv, cp, and cp -p commands have
on a file’s ACL (assuming that the destination file system also supports NFS V4
ACLs).

Table 3-9 UNIX commands and impact on ACLs

Directory structure and ACLs
There are many different ways you can choose to organize your data into a
directory structure and implement ACLs to control access to that data. For
example, you might choose from two different methods to control read access to
data:

1. Controlling access at the directory (container) level by maintaining uniform
access permissions on files and subdirectories within a directory

or

2. Leaving access wide open at the directory level and setting unique access
restrictions at each individual file.

Choosing a method depends on your requirements. Each method has its own
characteristics, some of which are as follows.

Characteristics of method #1:

� It is easier for most people to keep track of permissions when files with like
permissions are grouped together.

� Permissions can be easily changed via a bulk replacement of the ACLs. (See
“Maintaining an existing directory structure” on page 82.)

� If a subset of files in a directory need to have their permissions changed, the
files must be moved to a different directory. Directory location changes can be

Command Resulting file ACL

mv The file retains the same ACL that it had in the original location if the
source and target file systems are the same. If not, then ACL
assignment occurs as per cp below.

cp The file inherits its ACL from the directory where it is being placed, just
as if it were a newly created file.

cp -p The file retains the same ACL it had in the original location.
 Chapter 3. Enhanced security in NFS V4 79

disruptive to operations. (for example, symbolic links and other path name
references might have to be updated.)

� A file could inadvertently inherit incorrect permissions if it is placed in the
wrong directory.

� If a directory has less restrictive access permissions than a parent directory,
an NFS client could possibly mount that directory on a path that has more
open access. A user whose access would normally be blocked by the parent
directory might then be able to access the directory via the mounted path.

Characteristics of method #2:

� Every file’s permissions can be tailored to its unique access requirements.

� A file does not have to be moved when its permissions need to be different
than the files around it.

� It is more difficult to keep track of the different file permissions.

� It is easy to mistakenly overwrite a file’s permissions via a bulk update, and it
is relatively complicated to detect a mistake and then to restore the correct
permissions after a mistake has happened. (You would have to know via
some external source what the original permissions were.)

� To prevent inadvertent access, each file would have to start out with the most
restrictive set of permissions (via inheritance), requiring manual intervention
by the user to share that file with others.

Maximizing the benefits of ACL inheritance
If you choose to implement method 1 on page 79, you should organize your
directory structure to maximize the use of ACL inheritance. To do this, carefully
plan out your directory structure so that files and subdirectories with the same
access requirements are collocated under a single parent directory.

This example helps illustrate this:

An organization has three departments: engineering (eng), sales, and human
resources (hr). People from each of the departments are working on two different
projects: projA and projB. For business reasons, the two projects must be entirely
separate, and people working on one project must not be able to access the data
belonging to the other project.

Each department has its own directory for data, and each department creates
separate project directories under its directory. The resulting directory structure
is depicted in Figure 3-12 on page 81.
80 Securing NFS in AIX

Figure 3-12 Directory structure that makes poor use of ACL inheritance

This structure has the project directories replicated under each department. If a
permissions change has to be made to one of the projects, those changes must
be made in three different places.

A directory structure that better lends itself to managing the project permissions
is depicted in Figure 3-13.

Figure 3-13 Directory structure that makes better use of ACL inheritance

This structure has a separate projects directory where the permissions for each
special project can be managed in one place. The departments still put their own
non-project-related data under the dept directory.
 Chapter 3. Enhanced security in NFS V4 81

Maintaining an existing directory structure
Inheritance takes care of setting permissions for newly created files and
directories, but it does not affect permissions for existing files and directories. No
matter how carefully you plan ahead, you will eventually need to change
permissions on an existing directory structure and all of the files it contains.

There are two possible ways to make a large-scale permissions change:

1. Make the change to one file or directory and then propagate the change to
other files and directories by copying the whole ACL from the file or directory
that you already changed.

2. Incrementally change the ACL for every file and directory.

The first method is simpler to implement, but all files and directories being
changed will take on exactly the same permissions, eradicating any variation that
may have existed. This may be a good thing or a bad thing, depending on your
structure. The second method is much more complex to implement, but it does
allow for other differences to exist in the ACLs. This is another example where
carefully planning your directory structure around permissions requirements can
make administration easier.

The rest of this section illustrates possible ways to implement the ACL
propagation method #1 above.

It is possible to propagate an ACL to an entire directory structure using a
combination of aclget and aclput as follows:

aclget dirname | aclput -R dirname

You can use a different source and directory name, or you can specify the same
directory name for both source and destination to copy a directory’s ACL to all of
its descendants (including itself).

Using the aclget | aclput combination is convenient, but there are drawbacks:

� If you mistype the name of the source directory, you will completely wipe out
the permissions in the destination directory. This can be remedied quickly by
reissuing the command with the correct source name, but meanwhile you will
have blocked access to any user or application that tries to access the data.

� The aclput -R command stops at the first error it encounters, leaving the rest
of the files untouched.

Caution: Only use aclput -R on a directory structure that has a uniform
permissions structure. The command will make a wholesale replacement of all
existing ACLs at and below the specified directory. Any variations in ACLs that
previously existed will be lost.
82 Securing NFS in AIX

The sample script in Example 3-1 addresses these issues. It does not attempt to
run aclput if either the source or destination does not exist, and it runs aclput on
each individual file and directory so that all possible ACL changes will be made.

Example 3-1 Sample script for copying an ACL (with recursive option)

#!/usr/bin/ksh
#
copy_acl.sh
#
Copy the ACL for the given source file/directory to other files/directories
#

Name of this script
scrname=${0##*/}

#
Functions
#

function usage {
 echo "Usage: $scrname [-R] <source> <dest>"
 echo " where"
 echo " -R indicates a recursive copy"
 echo " (copy ACL to all files and directories below and including"
 echo " the destination.)"
 echo " <source> = the name of the file or directory to copy the ACL from"
 echo " <dest> = the name of the file or directory to copy the ACL to"

 exit 1
}

if [[$# -eq 0]]
then
 usage
fi

#
Process input parameters
#

if [["$1" = "-R"]]; then
 SETSUBTREE="true"
 shift
else
 SETSUBTREE="false"
fi

if [[-n "$1"]]; then
 Chapter 3. Enhanced security in NFS V4 83

 SRC_NAME="$1"
else
 usage
fi

if [[-n "$2"]]; then
 DEST_NAME="$2"
else
 usage
fi

#
Initialize other variables
#

NBERR=0
TMP_ACLFILE="/tmp/.AIXACL_$$"

if [[-e "${SRC_NAME}"]]; then
 aclget -o "${TMP_ACLFILE}" "${SRC_NAME}"
 NBERR=$?
else
 echo "Source \"${SRC_NAME}\" does not exist"
 NBERR=1
fi

if [["${NBERR}" -eq 0]]; then
 if [[-e "${DEST_NAME}"]]; then
 if [[-d "${DEST_NAME}" && "${SETSUBTREE}" = "true"]]; then
 find "${DEST_NAME}" -print | while read NAME
 do
 aclput -i "${TMP_ACLFILE}" "${NAME}"
 ((NBERR += $?))
 ls -dl "${NAME}"
 done
 else
 aclput -i "${TMP_ACLFILE}" "${DEST_NAME}"
 ((NBERR += $?))
 ls -dl "${DEST_NAME}"
 fi
 else
 echo "Destination \"${DEST_NAME}\" does not exist"
 NBERR=1
 fi
fi

rm -f "${TMP_ACLFILE}"
exit ${NBERR}
84 Securing NFS in AIX

3.4.6 NFS V4 ACLs: permissions scenarios
The following scenarios help illustrate how NFS V4 ACLs can be applied.

1. Restricting home directory access to just the associated user, and not
allowing users to change permissions and open up their home directories to
others.

2. Making sure that a particular group is denied access to a set of data.

ACL scenario 1: home directories
Users’ home directories can be a collector for all types of data. Users often place
data in their home directory while working on it. The data may have come from a
directory with strict access controls, and the home directory’s permissions should
not allow wider access to that data. One way to manage this is to lock down each
home directory so that only its associated user can access it.

This is difficult to do with standard UNIX permissions. There are two basic
options:

� Make the user the owner of the directory and allow only owner access.

Because the user owns the directory, he or she can change its permissions,
which we do not want to allow.

� Create a group for each user, where the user is the only member; make the
home directory owned by root and the user’s group; and allow only owner and
group access.

The user cannot change the directory permissions, but this option requires
maintaining a whole set of groups, one for each user.

This is easier to do with NFS V4 ACLs. Make root the owner of the directory and
add a user ACE to allow the user access to the directory. This is how that ACL
would look:

*
* ACL_type NFS4
*
*
* Owner: root
* Group: system
*
s:(OWNER@): a rwpRWxDaAdcCs fidi
s:(OWNER@): d o fidi
u:sally(sally@nfsdom1): a rwpRWxDaAdcs
u:sally(sally@nfsdom1): d Co
s:(GROUP@): d rwpRWxDaAdcCos fidi
s:(EVERYONE@): d rwpRWxDaAdcCos fidi
 Chapter 3. Enhanced security in NFS V4 85

(Note that the user ACEs do not have to be inherited because files that are
created below the directory will be owned by the user.)

The user can open up permissions for files and subdirectories that he or she
creates in the directory because the user owns them, but the home directory
itself will still block access to those files.

ACL scenario 2: block a group’s access
If you have two subcontractors working on a project, and you want to make sure
that the subcontractors are not able to access each other’s data, you can do the
following:

Create a group for each subcontractor; put each subcontractor’s data in a
separate directory structure; and put an ACE at the top of the ACL that denies
access to the other subcontractor. (It is important that the ACE be at the top of
the list to prevent other ACEs from allowing access before the subcontractor’s
access is blocked.)

If the groups are company1 and company2, the ACL on company1’s data would
look like this:

*
* ACL_type NFS4
*
*
* Owner: root
* Group: system
*
g:company2(company2@nfsdom1): d rwpRWxDaAdcCos fidi
s:(OWNER@): a rwpRWxDaAdcCs fidi
s:(OWNER@): d o fidi
s:(GROUP@): a rRxadcs fidi
s:(GROUP@): d wpWDACo fidi
s:(EVERYONE@): a rRxadcs fidi
s:(EVERYONE@): d wpWDACo fidi

No matter what the rest of the ACEs are, company2 will be denied access to
company1’s data.

Note: It might be possible to NFS mount a lower-level directory that has more
open permissions and gain access to those files, but normally the mount
operation is under system administrator control. If mounts are managed
correctly, users will not be able to get directly at lower directories underneath
the home directory.
86 Securing NFS in AIX

3.4.7 NFS V4 ACLs: NFS V3 clients
It is possible to make an NFS V3 mount of a file system that contains NFS V4
ACLs. This combination exhibits the following behavior:

� The NFS server will still grant or deny data access based on the NFS V4
ACLs.

� The NFS client will not be able to view or manipulate the ACLs directly. For
example, an aclget command on the client returns the error:

aclget: The system call does not exist on this system.

� If the mount is made with the acl option (noacl is the default), the NFS client
will be able to manipulate AIXC ACLs, but not NFS V4 ACLs.

The bottom line: You may have NFS V3 clients mount file systems that use NFS
V4 ACLs. ACL inheritance and evaluation will work normally on the server.
However, do not attempt to manipulate access permissions directly from the NFS
V3 client. Any permissions change at the NFS V3 client will overwrite the NFS V4
ACL with an AIXC ACL.

Unfortunately, there is no good way to block a user on the NFS V3 client from
running chmod or aclput on files or directories that he or she owns. You will have
to publish policy and rely on well-behaved users. (You could completely disable
the chmod and aclput commands on the client, but that would also disable them
for other client file systems where using those commands is perfectly valid.)

Also keep in mind when using NFS V3 clients that the UIDs and GIDs have to
match between server and client.

3.5 NFS V4 host identification
We discuss two forms of host identification: basic identification using IP address
and host name, and Kerberos identification by machine principal.

3.5.1 Basic host identification
An NFS V4 server identifies client hosts by the IP address given in the RPC
packets. The NFS server turns this IP address into a host name by way of the
host resolver, which can get its information from the Domain Name Service
(DNS), Network Information Services (NIS), or the local /etc/hosts file.
 Chapter 3. Enhanced security in NFS V4 87

3.5.2 Kerberos host identification
Kerberos authentication uses a unique identifier called a machine principal to
identify hosts. The machine principal is established when configuring a host into
a Kerberos realm. The machine principal name is the fully qualified host name
prefixed with host/ (for example, host/nfs402.itsc.austin.ibm.com).

Another way that Kerberos indirectly identifies a host is through the NFS service
principal. (This is the identification of the NFS service running on the host.) The
service principal name is the fully qualified host name prefixed with nfs/ (as in
nfs/nfs402.itsc.austin.ibm.com). NFS clients using Kerberos authentication
identify NFS servers with this service principal.

3.6 NFS V4 host authentication
NFS servers always identify client hosts by IP addresses and host names,
regardless of the authentication method used. The value added with NFS V4 is
that when Kerberos authentication is the only allowed security method for an
exported directory (see the host authorization section next), the NFS client
session must be properly authenticated before gaining access to any of the data
in that directory.

Think of NFS V4 authentication of clients being mostly at the user level rather
than at the host level. (See 3.3.2, “RPCSEC_GSS user authentication using
Kerberos” on page 59.)

Kerberos does authenticate NFS server identities to the clients via the NFS
service principal. (See the NFS service principal discussion in the previous
section.)

3.7 NFS V4 host authorization
Host authorization in an NFS context means controlling which NFS client hosts
can mount exported directories from the NFS server. This is accomplished in AIX
with a combination of the /etc/exports file and the exportfs command.

Exporting directories from an NFS server is still fundamentally the same in NFS
V4 as it was in NFS V3. The main difference is that NFS V4 has added the new
security-related options shown in Table 3-10 on page 89.
88 Securing NFS in AIX

Table 3-10 New /etc/exports security options for NFS V4

The sec option is unique in that it can appear more than once in the exports
definition for a directory. This allows different ro, rw, root, and access options to
be specified for the different security options. For example, hosts using the sys
security method might only be allowed read access, while hosts using the krb5
security method might be allowed read and write access.

Here is a sample /etc/exports line with the new NFS V4 security options:

/exports -vers=3:4,sec=krb5:krb5i:krb5p,rw,sec=sys:none,ro

For more about exporting directories, see the following publications:

� AIX 5L Version 5.3 System Management Guide: Communications and
Networks, SC23-4909

� The exportfs command in AIX 5L Version 5.3 Commands Reference

� The /etc/exports file in AIX 5L Version 5.3 Files Reference, SC23-4895

Option Description

vers Controls which version NFS mounts are allowed. Possible values are 2, 3,
and 4. Versions 2 and 3 cannot be enforced separately. Specifying Version 2
or 3 allows access by clients using either NFS protocol versions 2 or 3.
Version 4 can be specified independently and must be specified to allow
access by clients using Version 4 protocol. The default is 2 and 3.

sec Controls which security methods are allowed.
Possible values are:
sys (UNIX authentication)
dh (DES authentication)
krb5 (Kerberos, authentication only)
krb5i (Kerberos, authentication, and integrity)
krb5p (Kerberos, authentication, integrity, and privacy)
none (Allow mount requests to proceed with anonymous credentials if the
mount request uses an authentication flavor not specified in the export.
Otherwise a weak auth error is returned. By default, all flavors are allowed.)
In the absence of any sec option, sys (UNIX authentication) is assumed.

Note: You cannot specify the same security option in more than one sec=
stanza in a single exports definition.
 Chapter 3. Enhanced security in NFS V4 89

90 Securing NFS in AIX

Part 2 Implementing ing
NFS V4

In this part we introduce you to the planning and implementation methodologies
that were used while preparing this book.

Part 2
© Copyright IBM Corp. 2004. All rights reserved. 91

92 Securing NFS in AIX

Chapter 4. Planning for NFS V4

The most crucial part of any new software and hardware implementation project
is the planning phase. If we get this part of the project right, then the design and
implementation phases become easier. Therefore, in this chapter we discuss
and provide detailed information about planning a reliable infrastructure for NFS
V4 deployment. The underlying concepts are complex, but it is easy to plan,
design, and implement when the concepts are well-understood.

Considerations that must be taken into account when beginning any planning
phase include:

� Currently available and deployed hardware, software, and applications

Consider the following questions:

– Do you have an inventory of your currents assets and their usage?

– Do you have a logical overview of your infrastructure?

� The future IT strategies of your company

– Do you want to have centralized user management?

� Business-driven design and implementation issues

– Do you have the need to exchange data with other customers or
departments?

– Do you have other (third-party) applications to be considered?

4

© Copyright IBM Corp. 2004. All rights reserved. 93

We also look at the necessary planning requirements if you want to use NFS V4
without some of the enhanced features, simply as a replacement to your current
NFS V3 environment.

This chapter discusses the following:

� Deployment of NFS V4 in general

� Mandatory requirements

� Identification methods

� NFS Authentication methods

� Authorization methods

� Choosing the appropriate file system types

� NFS protocols and namespace considerations

� Sizing and capacity planning considerations

� Migration considerations

Important: Careful planning for your NFS V4 deployment is crucial if you want
to properly use the enhanced security features provided by Kerberos
Authentication as well as NFS V4 ACLs.
94 Securing NFS in AIX

4.1 Deployment of NFS V4 in general
Deployment of NFS V4 should be planned in such a way that a smooth
implementation and integration into the existing infrastructure can be achieved.
Normally, this is done by:

1. Evaluating the basic conditions for deployment.
2. Defining the architectural design and logical layout.
3. Integrating the design in a sample environment.
4. Defining how the rollout will take place into your infrastructure.

We have attempted to develop a logical approach to the planning process for
implementing NFS V4. Figure 4-1 on page 96 shows a planning flow chart that
we developed and used to build our test environment and to evaluate different
migration scenarios. We recommend that you use this chart as a template when
approaching your infrastructure planning.

For this redbook project, we did not have an existing environment to migrate
from, so we planned and built one from scratch using the flow chart. However,
most of you will be looking at this from an existing systems migration point of
view. Some considerations in using the flow chart:

� The flow chart is designed to be modular. So, based on what you have
already implemented in your existing environment, you can skip to the next
step on the flow chart and continue with the planning.

� It was impractical to cover all possible permutations when considering a
migration path, so in 4.9, “Migration considerations” on page 116, we walk
you through some of the scenarios we consider to be most common.

� Certain parts of the flow chart may not easily plug into your environment, as
they are new concepts introduced by NFS V4. On the whole, the flow chart
should serve as a good building block for your planning considerations.

Important: With NFS V4, the following two general design constraints should
be taken into account while planning the deployment. These two topics reach
a level of primary importance because of functional changes introduced by the
NFS V4 standard:

� NFS domain and Identity Mapping
� Authentication
 Chapter 4. Planning for NFS V4 95

Figure 4-1 Flow chart: implementation process decisions
96 Securing NFS in AIX

4.2 Mandatory requirements
The “What is your name resolution type?” and “Choose your NFS Domain”
questions in the flow chart (Figure 4-1 on page 96) are two areas that dictate
how you plan and implement your design.

4.2.1 What is your name resolution type?
Whatever name resolution option you choose (/etc/hosts or DNS), it must be in
100% working order. Name resolution plays a major part throughout the planning
and implementation phase.

NFS V4–related name resolution
NFS V4 does not support referencing hosts by IP address. If applying NFS
export restrictions based on client host names is desired, proper setup of host
name resolution is essential for correct operation. Therefore, you should observe
the following guidelines to avoid most name-resolution-related problems:

� Ensure valid forward and reverse name mappings for all systems on your
network. The machines that will participate in your NFS domain or Kerberos
realm must have resolvable name entries, forward and reverse. This means
that if you are using DNS, an entry for all participating machines must exist
that maps the host name to an IP address, and a reverse entry must exist for
that IP address mapping it back to the original host name. If you are using
/etc/hosts, the same applies, but you also have to ensure that all participating
machines have the same common information within /etc/hosts file.

� Ensure fully qualified domain name (FQDN) to host name mapping. What a
system considers its host name is also important. When NFS V4 or Kerberos
creates the name of the host principal, it uses the output from the
gethostname() call to resolve the so-called canonical name (CNAME) and
generates the principal name. If this host principal does not match the host
principal that is held in the KDC’s database, then the application will fail,
saying it cannot find the principal.

For example, if a host resolves the CNAME bigserv for its host name
bigserver, yet its host principal is host/bigserver.ibm.com@IBM.COM, it will
attempt to find a host principal of host/bigserver@IBM.COM and fail.

� Ensure that both the localhost and loopback interface names (by default, IP
address 127.0.0.1) can be resolved in any case.

You may take RFC1537, Common DNS Data File Configuration Errors, and
RFC2181, Clarifications to the DNS Specification into account while planning
your name resolution infrastructure.
 Chapter 4. Planning for NFS V4 97

Kerberos-related name resolution
Traditional UNIX Kerberos V5 implementations use a flat file (/etc/krb5/krb5.conf
or /etc/krb5.conf) for hostname-to-Kerberos realm mapping. This is similar to the
/etc/hosts file being used for the name-to-ipaddress mapping and vice versa. The
Kerberos configuration file contains two major pieces of information.

� The DNS domain to Kerberos realm mappings
� A list of KDCs for each Kerberos realm

Obviously, this method does not scale, so just as DNS now serves the purpose
of the old /etc/hosts file, DNS can also be used to provide Kerberos
configuration.

Kerberos can use DNS as a service location protocol by using the DNS SRV
record as defined in RFC2052. In addition, Kerberos can use a TXT record to
locate the appropriate realm for a given host or domain name. These DNS
entries are not required to run a Kerberos realm, but they do eliminate the need
for manual configuration of clients. With these DNS records, Kerberos clients can
find the appropriate KDCs without the use of a configuration file.

Windows will establish the necessary SRV records automatically when an Active
Directory domain is created. Those using UNIX for their KDCs can create these
DNS entries manually in their zone files as a convenience to the DNS clients.

4.2.2 Choosing your NFS domain
From a traditional point of view, sharing data between servers and clients is done
by the use of NFS. All features of NFS V3 are fully supported by the NFS
implementation in AIX 5.3.

If you do not wish to take advantage of the security enhancements offered by
NFS V4, very little has to be installed or implemented. The changes that do have
to be made are as follows:

� NFS V4 requires that the NFS domain be set on all servers and clients.

� NFS V4 changes the way users and groups are looked at. Previous versions
of NFS used UIDs and GIDs. NFS V4 now changes this to user@domain and
group@domain.

Tip: Using the /etc/hosts file as the only form of name resolution on all
systems will work, but using a DNS server provides a more reliable and easily
managed solution to your name resolution. This gives you a single point to
manage your name resolution rather than having to add or change entries on
each host in your network.
98 Securing NFS in AIX

If you have not already done so, we recommend that you take the time to read
through Chapter 2, “What’s new in NFS V4?” on page 11 and Chapter 3,
“Enhanced security in NFS V4” on page 45 for a better understanding of what
has changed in NFS V4 and the new security enhancements offered. The topics
that are discussed from here on require you to have a basic understanding of the
new concepts being brought in by NFS V4. The new protocol requires a major
change in your mind set; you can no longer think along the lines of NFS V2 and
NFS V3. We cannot stress this enough!

The NFS domain name is:

� By the standard defined by the RFC, bound to the DNS domain name.

� Case insensitive, upper-case characters will be treated as lower case during
runtime.

� Upper-case characters will be converted automatically to lower case when
using the preferred method to change or set the NFS domain: the chnfsdom
<NFS Domain Name> command.

We recommend that you do not edit the /etc/nfs/local_domain file manually
but if you do so and use upper-case characters, the chnfsdom command will
show upper-case characters.

For simplified management, we logically linked our NFS domain to the DNS
domain. In our sample environment our DNS domain was:

itsc.austin.ibm.com

Therefore our NFS domain became:

itsc.austin.ibm.com

4.3 Identification methods
For a fully supported login process in an AIX environment, you need both user
identification and user authentication. In this section, we describe some details
you should take into account while planning user identification in your
environment. See 3.2, “NFS V4 user/group identification” on page 48 for general
information on user identification.

Important: The AIX implementation does not require the NFS domain to
match your DNS domain. You can call your NFS domain pretty much anything
you like, but keeping a relationship to your DNS domain simplifies managing
the environment. It also helps make sure that the name is unique.
 Chapter 4. Planning for NFS V4 99

4.3.1 Selecting the user/group repository
User identification comprises all the necessary information about what user IDs
exist and what the attributes are for these user IDs. This information must be
consistent so that you can accommodate the following considerations:

� Management of identities

How do you intend to manage creation, modification, and deletion of users
and groups?

� Flexibility of the end user

Will end users each use only one system, or will they also log on to other
systems using the same user name and password combination?

� Scalability / availability

How many NFS clients will you have? What happens if you have to integrate
new systems into your environment? How much server downtime can you
tolerate?

� Scope of data sharing

How widely will end users share data: only within each department, or
throughout the entire organization?

� Access control

Access control decisions are based on user and group identity. To properly
control access to a resource, you must make sure that all accessing entities
are uniquely identified. With NFS V4, the identifiers are strings:
user@nfs_domain or group@nfs_domain. If you also need to support NFS
V3 clients in your environment, you will also need to make sure that the
numeric UIDs and GIDs are unique.

User and group identities are maintained in some kind of repository. This
repository typically is implemented through one of the following methods:

� Standard UNIX /etc/passwd and /etc/group files
� Network Information Services (NIS)
� Lightweight Directory Access Protocol (LDAP)

Use the following guidelines when choosing which method to use for your
user/group repository.

Using /etc/passwd and /etc/group might be desirable if each user uses only one
system. You will need to somehow maintain a central clearing house for user
identities to make sure that you choose names and IDs that are unique.

If users log into multiple systems using the same user name and password, you
will need to replicate your /etc/passwd and /etc/group information to all
100 Securing NFS in AIX

participating systems. This becomes very difficult to manage when the number of
systems is more than just a few. In this situation, you will probably want to use a
centrally managed repository such as NIS or LDAP.

If you are using Kerberos authentication with NFS, we recommend that you
choose LDAP, using the schema defined in RFC2307 as your user/group
repository. LDAP supports Kerberos integrated logon, but NIS does not.

You can also use a combination of methods for your user/group repository. For
example, if your security policy does not allow the same password to be used on
multiple systems, you could maintain the password locally and still use a central
repository such as NIS or LDAP for the rest of the user and group information.

4.3.2 Other identification considerations
If your organizational needs require that you operate across different NFS
domains for data access, you must use identity mapping to map users and
groups from one NFS domain to the other. Enterprise Identity Mapping (EIM)
from IBM provides a way to manage and perform this cross-domain mapping.

For more information about EIM, refer to the AIX 5L version 5.3 Security Guide
and the IBM Redbook Windows-based Single Signon and the EIM Framework on
the IBM ̂iSeries Server, SG24-6975.

Note: The RFC2307 schema enables NIS maps to be imported into an LDAP
directory. If your existing infrastructure uses NIS to manage user and group
information, you may want to consider migrating to LDAP. After the NIS maps
have been migrated, AIX 5L and other RFC2307 compliant platforms can use
LDAP instead of NIS to access this information.

For further information on how this can be achieved we refer you to the
following Technote: AIX - Migrating NIS Maps into LDAP, TIPS-0123, at:

http://www.redbooks.ibm.com/abstracts/tips0123.html?Open

Note: Use of EIM requires LDAP.
 Chapter 4. Planning for NFS V4 101

http://www.redbooks.ibm.com/abstracts/tips0123.html?Open

4.4 NFS Authentication methods
Before planning the NFS V4 authentication method used in your environment, we
suggest reading 3.3, “NFS V4 user authentication” on page 59. With NFS V4,
you have the following choice:

� AUTH_SYS
� Kerberos

4.4.1 AUTH_SYS method
By default, NFS uses the AUTH_SYS method to authenticate user identities.

Under the AUTH_SYS security flavor, the user is authenticated at the client,
usually via a logon name and password. The NFS server trusts the user and
group identities presented by its clients.

For example, if tight physical security cannot be maintained on a network, it
would be easy for someone to bring in a Linux laptop, set the IP address to be
the same as a valid NFS client, and connect the laptop to the network using the
valid client’s connection. When connected, the person can set up any user
account desired on the laptop. That way, someone who knows what they are
doing can gain access to any of the exported data on an NFS server.

If someone gains administrative control of an NFS client, or has control of a
machine pretending to be a valid NFS client via IP address spoofing, it is easy to
masquerade as any valid NFS user.

Because of this vulnerability, you should not use AUTH_SYS user authentication
if controlling access to your data is important.

4.4.2 Deploying Kerberos
To take advantage of features offered by NFS V4, we operate under a Kerberos
authentication environment. If your organization has a Kerberos infrastructure in
place, you can use the existing KDC. This can be done only if the installed
version is compatible with the software requirements for NFS V4. IBM provides a
detailed migration path for customers who have previous versions of Network
Authentication Services (NAS). If you plan to set up a new Kerberos
infrastructure to support NFS V4, we provide some guidelines in this section.

See Appendix A, “Kerberos” on page 243 for more information. Also, detailed
information can be found in IBM Network Authentication Service Version 1.4 for
AIX, Linux, and Solaris Administrator’s and User’s Guide. This document is
made available with fileset krb5.doc.en_US on the AIX 5.3 Expansion CD.
102 Securing NFS in AIX

The need for Kerberos
Kerberos has grown out of the need for a secure protocol that enables users to
identify themselves to applications and services. Normally, information is
transmitted across the network in an insecure form, which is usually just plain
readable text. Kerberos removes many of the risks by encrypting passwords,
reducing or eliminating the use of passwords, and providing optional methods to
validate data integrity and encrypt data.

The main components of the Kerberos protocol implementation are:

� Key Distribution Center (KDC)
� Principals and realms
� Tickets
� Services

In addition to data encryption and integrity checking, you can use NFS V4 with
Kerberos authentication to help control which clients can access exported
directories on an NFS server. We demonstrate this in Figure 4-2.

Figure 4-2 NFS V4 Kerberos authentication on system level
 Chapter 4. Planning for NFS V4 103

In Figure 4-2 on page 103, clientB cannot mount the exported file system
because the client is not:

� In the Kerberos realm
� Authenticated to Kerberos

This authentication checking was not possible with NFS V3, and to achieve a
similar control over mounts it is very common to use the exportfs option
-access=Client[:Client] within the file /etc/exports. Sometimes the list of clients
becomes very large and the server exports list must be changed every time a
client is added, deleted, or renamed.

With NFS V4 and Kerberos authentication, with the option sec=krb5, the client is
required to be authenticated before contacting the NFS V4 server. This means
that even if clientA resides in the same Kerberos realm as the NFS V4 Server, a
mount request will fail if clientA itself or the user is not authenticated.

KDC considerations
Authentication requests to the KDC can be easily handled with today’s available
processors, therefore a single or dual processor machine should suffice for
thousands of clients.

The KDC server will be one of the most important servers in your network, so:

� The system should be running 24x7.

� Planning for disaster recovery should be taken into account. Your KDC
database should be replicated if possible.

� The KDC server should ideally not be used for any other purpose because if
the KDC is compromised, all Kerberos principals are compromised.

System time synchronization
Kerberos requires that the system time be reasonably close throughout the
network (within five minutes by default). Before beginning with the
implementation, you should set up a mechanism to automatically synchronize
time throughout the network between the servers and the clients. The following
are possible methods for synchronizing time:

� AIX timed daemon.

� NTP (Network Time Protocol, official home page at: http://www.ntp.org/)

Note: This applies only to UNIX-based systems running a KDC. Windows
domain controllers function as much more than just a Kerberos KDC and may
have a higher server-to-client ratio than a dedicated UNIX KDC.
104 Securing NFS in AIX

http://www.ntp.org/

� In a small business network, it should suffice to use the AIX setclock
command, scheduled through a crontab entry, to synchronize the system time
between the client and KDC server.

� On Windows OSs, use of NTP on the server and client is also supported.

Multi-homed servers
Multi-homed servers use more than one physical network interface with different
IP addresses to serve clients. There are several reasons why you would want to
do this, including:

� Subnetworks
� Load balancing

The KDC server can only be bound to one IP address. This is defined during the
setup of the KDC by providing the system host name.

Therefore, mapping between the client and server network interfaces as well as
the KDC bound network interface has to be planned and managed.

Network infrastructure
You should take into consideration not only how many authentication clients you
will be serving, but also where these clients are located. While the bandwidth
requirements for Kerberos authentication are miniscule, the important metric for
Kerberos performance is the network latency between clients and the Kerberos
KDC. Each authentication exchange requires time for at least one full round trip
between client and KDC. Users’ authentication requests will become noticeably
slow if this latency is long, for reasons such as:

� Going through a satellite uplink
� Traversing across DSL connected backbone

Consequently, you should position your KDCs so that they are as close to the
clients’ network as possible. To support geographically dispersed networks with
possibly different types of connections, Kerberos implementations such as IBM
Network Authentication Service are capable of using the replication mechanism
to set up a KDC server and propagate the KDC database as needed.

Principals and realms
To understand how principal names are generated in Kerberos, we must first
understand Kerberos realms. A Kerberos realm is often referred to as an
administrative domain. A realm consists of members, which can be users,

Note: The default value for maximum clock skew is 300 seconds (five
minutes). For security reasons, we recommend that you not change this value.
 Chapter 4. Planning for NFS V4 105

servers, services, or network resources that are registered within a KDC’s
database. Each of these members has a unique identifier that is called a
principal. The Kerberos realm is made up of the KDC and all of its principals.

Realm naming considerations
Although the realm can be any ASCII string, conventionally the realm name is
the same as the domain name, in uppercase letters. If multiple realms are
needed, use descriptive names that end with the domain name, such as
CARPROJECT.AUSTIN.IBM.COM or POWERTRAIN.AUSTIN.IBM.COM.

In our environment we created two realms:

REALM1.IBM.COM

and

REALM2.IBM.COM

Principal naming considerations
By default, every entity contained within a Kerberos installation, including
individual users, computers, and services running on servers, has a principal
associated with it. The principal is a unique identifier to which KDC assigns
tickets. There are three parts of a principal name: the primary, the instance
(optional) and the realm. The primary component of the principal name is
separated from the instance by a forward slash (/) The realm is separated from
the rest of the principal name by the at sign (@):

� In the case of a host principal, the user name is host/<hostname>@REALM
� For an NFS V4 service principal, it is nfs/<hostname>@REALM
� For a user, it is <username>@REALM

Because the principal is a unique identifier, you should plan a strategy for
principal naming throughout your Kerberos environment. This is especially true
for the NFS service principal names, because NFS V4 must have proper name
resolution in place to compile the ticket request. See “NFS V4–related name
resolution” on page 97.

We decided that all NFS V4 Server and NFS V4 full clients in our environment
would have the following service principal name:

nfs/<hostname>.itsc.austin.ibm.com@REALM

Important: The normal conventions of naming Kerberos realms is to create
them using upper case.

Tip: Always use the FQDN for the NFS service principal.
106 Securing NFS in AIX

User principal names can follow your current naming convention for user logon
names. As of today, you should restrict principal names to the printable portion of
the POSIX portable character set, which is equivalent to 7-bit ASCII.

4.4.3 Default types of encryption for KDC and security flavors
Several types of encryption are available for use with Network Authentication
Service; by default, Triple-DES is used. Multiple encryption types can be used
within a Kerberos realm. The NFS client and server will negotiate which of the
supported encryption types to use.

NAS 1.4 supports the following types of encryption:

� aes128–cts, aes256–cts, des–cbc–crc, des–cbc–md4, des–cbc–md5,
des3–cbc–sha1, arcfour–hmac, arcfour–hmac–exp

However, the NFS V4 implementation on AIX 5.3 supports only the following
types of encryption:

� des–cbc–crc, des–cbc–md4, des–cbc–md5, des3–cbc–sha1

For the best performance and interoperability, we recommend that you use
Single-DES as the standard encryption type on your installation. This may
depend, of course, on your overall security strategy. If protecting packet privacy
is critical, you might need to stay with Triple-DES encryption.

In addition to the chosen standard Kerberos encryption, you can select between
the following security flavors, which are options used during exporting file
systems and depend on your security needs:

� krb5
Use Kerberos V5 protocol to authenticate users before granting access to the
shared file system.

� krb5i
Use Kerberos V5 authentication with integrity checking (checksums) to verify
that the data has not been tampered with in transmission.

� krb5p
Use Kerberos V5 authentication, integrity checksums, and privacy protection
(encryption) on the shared file data. This provides the most secure file
sharing, as all traffic is encrypted.

Note that each increasing level of protection carries with it a performance
penalty.

Note: We only used krb5, and we recommend that you start with this.
 Chapter 4. Planning for NFS V4 107

4.4.4 NFS client considerations when using Kerberos
This section discusses considerations you should take into account while
planning and implementing your NFS V4 clients.

NFS V4 slim client versus full client
NFS V4 introduces the concept of a full client and a slim client similar to what is
already used in the Distributed Computing Environment (DCE Version 3). This
concept does not necessarily apply to other applications that use Kerberos
authentication.

By default, every entity contained within a Kerberos installation (including
individual users, computers, and services running on computers) has a principal
associated with it. In the case of a host principal (machine principal), the principal
name is host/<hostname>@REALM; for an NFS service principal, it is
nfs/<hostname>@REALM.

In the AIX 5.3’s NFS V4 implementation, two types of Kerberos clients are
defined: slim clients and full clients.

� An NFS client without a dedicated NFS service principal is called a slim client.

� An NFS client with a dedicated NFS service principal in the form
nfs/<hostname>@REALM is called a full client. The full client provides
stronger security. However, it is the stronger Kerberos-based RPC security
that this type of client provides that requires more administrative overhead:
You should run the config.krb5 command on each client with the Kerberos
Administrative ID.

If you trust all systems connected to your internal network and authentication at a
user level fulfills your needs, then using slim clients would suffice. The following
reasons are why you would want to deploy slim clients in your infrastructure:

� Pre-installed new systems
� Mass rollout of new systems
� Unprompted upgrade of clients
� Share all the same Kerberos realm as well as NFS domain

In addition, there are several choices for installing the slim clients, and these are
based on the way your systems are installed:

� Complete new installation (scratch installation)
� Cloning by use of a full system backup image
108 Securing NFS in AIX

Kerberos integrated logon
User authentication at a system level is a process where a user claims to have a
certain identity and the system has to check whether this is true. For this
process, the system requires a unique piece of information about this user
(usually a password). When users authenticate, the system challenges them by
requesting that they type in their password. The user’s response is then
compared to the stored unique piece of information, and the request is accepted
or denied depending on the outcome of this comparison.

AIX 5L supports load modules that are responsible for identification, for
authentication, or both. You can use either one load module, which supports
both, or you can specify one load module that is responsible for the identification
part, and another that is responsible for authentication. Such a combination of
two modules is called a compound module.

We recommend that you use a compound module comprised of NAS 1.4 for
authentication and LDAP RFC2307 for identification. With NAS and LDAP in
place and KRB5LDAP as the authentication module on the clients, you do not
have to deal with creating users on every client.

For more about configuring the system to use these authentication modules, see
5.9.4, “Configure the NFS V4 client for integrated login services” on page 170.

For more details about using AIX directory integration to support user
authentication and identification, refer to the Security chapter in the redbook AIX
5L Version 5.3 Differences Guide, SG24-7463.

4.4.5 Deployment of LDAP
LDAP can be used as a backend system to provide additional user identification
information that is not covered by the KDC environment. Because the NFS V4
implementation of RPCSEC_GSS is based on the MIT Kerberos Standard
RFC1510, all compliant third-party LDAP servers can be substituted for IBM
Tivoli Directory Server.

Attention: As this book is being written, a slim client is not capable of
automatically mounting file systems that require RPCSEC_GSS authorization
only. To enable a slim client to automatically mount file systems at boot time,
the server exports definition must include AUTH_SYS in the first sec= stanza.
 Chapter 4. Planning for NFS V4 109

4.5 Authorization methods
Authorization is used to control access to either client hosts or client users.

There is only one way to control access to client hosts: via the /etc/exports file
and the exportfs command. This is described in 3.7, “NFS V4 host
authorization” on page 88.

You have three options when it comes to controlling client user access to files
and directories:

� Standard UNIX permissions
� AIXC ACLs
� NFS V4 ACLs

4.5.1 Choosing your user authorization method
When deciding which user authorization method to implement, think about your
requirements for controlling access to data. Do you have simple or complex data
access requirements?

Standard UNIX permissions enable you to control access to only three identities:
the owning user, the owning group, and everyone else. If that is not sufficient to
meet your access control requirements, then you should choose one of the ACL
options. For example, if you have data where you need one group to have write
access, one or more other groups to have read-only access, and everyone else
to have no access at all, you will not be able to accomplish this using standard
UNIX permissions.

If standard UNIX permissions do not meet your requirements, you can then
choose to use AIXC ACLs or NFS V4 ACLs. If you choose NFS V4 ACLs, then
make sure that you choose file system types on your server that support this.
See 4.6, “Choosing the appropriate file system types” on page 111 for more
information.

You should not use AIXC ACLs if your requirements include one of the following:

� You have non-AIX NFS clients that must be able to manipulate ACLs for data
on your NFS server. AIXC ACLs are only supported in AIX.

� You require finer granularity access control than AIXC ACLs support. For
example, AIXC ACLs do not provide a way for you to set up a directory where
users can create files but not delete them after they are created.
110 Securing NFS in AIX

More details about permissions and ACLs can be found in 3.4, “NFS V4 user
authorization” on page 62.

4.5.2 Other user authorization considerations
Maintaining access control lists is more complicated than maintaining standard
UNIX permissions. You must understand how the ACLs are evaluated before you
can correctly construct an ACL. (See 3.4.4, “NFS V4 ACLs: ACL evaluation” on
page 69 for information about how NFS V4 ACLs are evaluated.)

Depending on how computer-savvy your users are, you will need to either
educate them on how to properly maintain their own ACLs or set up ACL
inheritance so that they do not have to worry about changing permissions. (See
“Directory structure and ACLs” on page 79 for more about setting up ACL
inheritance.)

What if you do not want to allow end users to change permissions, thus keeping
that task under the control of designated system or data administrators? The
system by default does not accommodate this. Files created by a user are owned
by that user, and a file’s owner can always change its permissions. You would
need to devise some way to make sure that all files are owned by an
administrator account. One way is to run a periodic cron job that changes
ownership of all files to that account. This leaves a window of time when a user
can change permissions on a newly created file, but this can be remedied by the
job that changes ownership. It can also make sure that the permissions are set
as they should be after it changes ownership.

You can see from this discussion that you may need to implement additional
administrative controls on top of those that are provided by default.

4.6 Choosing the appropriate file system types
AIX supports several different file system types, including:

� Journaled File System (JFS)
� Enhanced Journaled File System (JFS2)

Note: The choice of AIXC ACLs over NFS V4 ACLs should make sense in
environments that already have experience with AIX ACL models and are
running predominantly AIX platforms. Otherwise, use of NFS V4 ACLs is
recommended as the default choice due to its compliance with open
standards and to minimize potential interoperability issues with non-AIX
platforms.
 Chapter 4. Planning for NFS V4 111

� JFS2 with extended attribute format Version 2 (EAv2)
� General Parallel File System (GPFS)

The file system you can choose will be dictated by the authorization method you
chose above. If you want to use NFS V4 ACLs, then your choice should be either
JFS2 EAv2 or GPFS. This does not mean that your system cannot use the other
file system types. The restriction only applies to the file systems where you want
to use NFS V4 ACLs.

4.7 NFS protocols and namespace considerations
At this decision point, we are in the final planning stages. We now need to make
decisions about whether we will be running in a mixed environment (NFS V3 and
NFS V4) or creating a pure NFS V4 environment.

Namespace is a new concept to NFS V4. How do you go about implementing
something like this in a production environment? We begin by considering what it
means. We can then look at some ways that it can fit into your environment.

From an administrative point of view, a single namespace reduces the number of
mounts a client has to make per server down to one. With previous versions of
NFS, you had to mount all the required NFS exports from a server. A single
namespace allows the server to render a single view (pseudo-FS) for the client to
mount, hence the single mount. What does this mean to you? To gain the optimal
benefits of this feature you have to consider your server’s NFS exports layout.

Figure 4-3 on page 113 shows one way the single namespace could be
implemented and how it could benefit you, using one NFS server and five NFS
clients.
112 Securing NFS in AIX

Figure 4-3 One NFS server serving five NFS clients

You want to export five file systems from your server. If you use NFS V3, then
your server’s exports file will look something like Example 4-1.

Example 4-1 /etc/exports file on NFS V3 server

/home -rw
/usr/codeshare/ThirdPartyProgs -rw
/usr/local -ro
/var/db2/v81/DB -rw
/exports/scratch -rw

The NFS V3 client would then have to mount each export individually, as shown
in Example 4-2.

Example 4-2 The mount commands you would need to run on each NFS V3 client

mount serverY:/home /mount1
mount serverY:/usr/codeshare/ThirdPartyProgs /mount2
mount serverY:/usr/local /mount3
 Chapter 4. Planning for NFS V4 113

mount serverY:/var/db2/v81/DB /mount4
mount serverY:/exports/scratch /mount5

The NFS V3 server exported five file systems and the client had to mount five file
systems to five different mount points.

Now we look at how a single namespace would simplify the export and mount
process. We continue to use the directory structure defined in Example 4-1 on
page 113 to carry this out. The server’s /etc/exports file will look something like
Example 4-3.

Example 4-3 Rendering a single view for the NFS V4 client on the NFS V4 server

/exports -nfsroot
/home -vers=4,rw,exname=/exports/home
/usr/codeshare/ThirdPartyProgs -vers=4,rw,exname=/exports/ThirdPartyProgs
/usr/local -vers=4,ro,exname=/exports/local
/var/db2/v81/DB -vers=4,rw,exname=/exports/DB
/exports/scratch -vers=4,rw,exname=/exports/scratch

What have we done to the /etc/exports file to make the single namespace
concept into a practical implementation?

1. We need to set the pseudo-root on the server: This acts as the glue for all
other file systems. We used the /exports directory.

2. We then export all the other file systems, as we did with the NFS V3 exports,
but we add two new options:

vers=4 This tells the NFS server that the export is of type NFS V4.

exname This is the AIX implementation extension of the single
namespace concept. We have taken the file systems that we
want to export and glued them to /exports (defined in the first
line of the /etc/exports file).

If you look at the exname option (for all exports), we have also chosen to not
show the parent directories of all the exported directories. This enables us to
keep the server’s directory structure private and unexposed to the clients.

We will look at this from a practical point after we have shown what the client
must do to see the logical view. The command that the client has to run to mount
the exported file systems is:

mount -o vers=4 serverY:/ /nfs

The mount command tells serverY that the client is requesting a view of its single
namespace, and after the server allows the client access to the view, the client
will mount it onto the /nfs mount point locally.
114 Securing NFS in AIX

This is how the view is represented to the client:

ls /nfs
DB ThirdPartyProgs home local scratch

We can see that all the file systems we exported on the server are represented
under the client’s mount point (/nfs). If we now decide that we want to move the
/exports/scratch file system, on the server, to a different location, say /scratch,
and we also want to move /home to /users/home, we only have to make the
appropriate changes to the server’s /etc/exports file, and the client’s mount
command will remain the same.

Several other considerations must be taken in to account when allowing
concurrent access to the same data with NFS V2, NFS V3, and NFS V4. NFS V3
access may receive errors due to the NFS V4 granted state. Also, NFS V3
performance may be affected when data is also exported for NFS V4 access (the
use of vers=3:4 in the /etc/exports file).

4.7.1 Pseudo-root FS - alias tree versus classic model
Implementation of pseudo-root FS or the AIX-specific alias tree implementation
must be taken into account before deploying NFS V4. It introduces several
changes compared to the classic model as with NFS V3. There is no need to
migrate off the classic model when using NFS V4. Nevertheless, the alias tree
model seems to be the best from our point of view. See 2.8.6, “External name
space (exname)” on page 34.

While the pseudo-root FS - alias tree model delivers a good solution to build a
Global Namespace, you have to think about the current logical as well as
physical layout of your File systems on the NFS V4 Server. Nevertheless, you
can adopt the pseudo-root FS - alias tree model to run with your current physical
and logical layout.

4.8 Sizing and capacity planning considerations
Capacity planning of your infrastructure environment is crucial to your overall
operation. It is not the purpose of this book to discuss this topic. For further
reading see Sizing and Capacity Planning, SG24-7071.

Important: Either all Version 4 exports specify an external name, or none
specify an external name.
 Chapter 4. Planning for NFS V4 115

4.9 Migration considerations
As already mentioned, we assume that, in most situations, a version of NFS is
already deployed in your environment and therefore migration has to be taken
into account. In this book, we cannot cover all possible migration paths in terms
of how to migrate your current installation onto AIX 5.3. We have designed logical
migration paths that can be used for migration planning, as shown in Figure 4-4
on page 117.

All logical migration paths have a normal NFS V3 deployment on AIX as the entry
point, and end with deployment of Kerberos-based authentication. In addition,
the identification method can be chosen between classic (using local
/etc/passwd) or centralized, by the use of IBM Tivoli Directory Server or any
other backend system.

Choosing the final Namespace model in terms of using, for example,
pseudo-root FS goes with migration planning, which we do not cover in this book.
This migration will affect your general physical as well as logical file system and
mount structure of your server and client system but can be seen as independent
to your security model on which we are focused.

Figure 4-4 on page 117 shows three possible logical migration paths indicated by
the different numbers and arrows:

Dark arrows Probable migration paths expected in production
environments

Dashed arrows Alternative paths for crossover

Number 1 target Migration to NFS V4 without enhanced security

Number 2 target Migration to NFS V4 with enhanced security using new
authentication infrastructure

Number 3 target Migration to NFS V4 with enhanced security by extending
the available identification infrastructure
116 Securing NFS in AIX

Figure 4-4 Possible NFS V4 migration scenarios

What does Can coexist at the top of Figure 4-4 mean?

� Server file systems can be exported to support NFS V4 and NFS V3 at the
same time using the exportfs option -vers=3:4. This enables the client to
mount the file system using either NFS V3 or NFS V4, and enables you to use
clients that do not support NFS V4 to access the server file systems.

� With the AIX 5.3 NFS implementation, you can also use enhanced security
(RPCSEC_GSS API) with NFS V3, but only if all servers and clients are
running AIX 5.3.

At this point we discuss only the migration paths marked by the dark arrows.

1. In this case, migration to NFS V4 has been considered using a two-step
approach by migrating all server systems first to AIX 5.3 without having NFS
V4 deployed. After migrating all client systems to AIX 5.3, general
deployment of NFS V4 can take place.
 Chapter 4. Planning for NFS V4 117

2. If you are able to migrate all of your systems to AIX 5.3, you may plan to
integrate NFS V4 with enhanced security in one step. This implies paying
particular attention when planning your authentication infrastructure.

3. If you already have centralized identification, migration using a two-step
approach is reasonable. The first step introduces authentication services into
your existing identification infrastructure, and step 2 migrates the existing
NFS V3 environment into NFS V4.
118 Securing NFS in AIX

Chapter 5. Sample implementation
scenarios

This chapter provides practical information about installation, administration, and
deployment of NFS V4 implementation on AIX 5.3. You should get an idea of how
NFS V4 can be implemented in your environment through the step-by-step
scenarios that we used based on our own redbook development systems layout.

The following actions are demonstrated and discussed:

� General setup

What system level configurations are needed: PATH variables, Application
Event logging and so forth.

� Deploying NFS V4 in an classic NFS V3 manner without additional security
enabled.

We provide a sample that shows deployment of NFS V3 on AIX 5.3.

� Setting up a pseudo-root file system and a global filespace

We show how to set up and deploy the pseudo-root FS as well as the
advantages of using the pseudo-root FS - alias tree model to provide a Global
Filespace to the client.

5

© Copyright IBM Corp. 2004. All rights reserved. 119

� NAS Service environment to support the additional NFS V4 security features

This includes the required steps to set up a minimal NAS environment to
deploy Kerberos on the server and client. We also show the steps required to
integrate NFS V4 security flavors.

� Additional LDAP backend integration into KDC with integrated logon

This section guides you through the necessary steps to set up the
environment to deploy integrated logon on your client system while running a
KDC server with an LDAP backend for identification and authentication.
120 Securing NFS in AIX

5.1 Setup of the sample environment
This section describes the setup used on our systems for compiling the samples.
The setup may not adapt to your needs if you do not use NAS, but we believe
that it is useful to provide the information here.

5.1.1 PATH variable for NAS deployment
After installing the AIX 5.3 Base Operating System, the PATH environment
variable must be adjusted to make the required commands available to the end
user. In addition, correlations with other installed products such as DCE and
Tivoli Netview should be considered while setting the PATH variable systemwide.

The Java14.sdk file set is automatically installed as a co-requisite of
sysmgt.websm.rte 5.3.0.0. You can verify this by running the installp -ugp
Java14.sdk command. The standard PATH variable in /etc/environment is set to:

PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin:/usr/java14/jre/bi
n:/usr/java14/bin:/usr/java131/jre/bin:/usr/java131/bin

We found that the NAS user commands, such as kinit, are not found in the
PATH. Further, kinit is also installed with Java14.sdk.

Example 5-1 Sample output of different kinit versions with different PATH settings

type kinit
kinit is /usr/java14/jre/bin/kinit
#
type kinit
kinit is /usr/krb5/bin/kinit
#

Therefore, we changed the PATH variable in /etc/environment to:

PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin:/usr/krb5/bin/:/us
r/java14/jre/bin:/usr/java14/bin:/usr/java131/jre/bin:/usr/java131/bin

We distributed this file to all of our AIX NFS V4 servers and clients.

5.1.2 syslogd settings
By default, all NFS V4 related debug output is written to the syslog.

Important: It is important that you do not confuse the term NAS with Network
Attached Storage. In this context NAS stands for Network Authentication
Service.
 Chapter 5. Sample implementation scenarios 121

To capture errors logged by the NFS daemons, we made the following changes
to our systems:

1. A local file system was created and mounted to the /var/nfsv4log directory. (It
is always better to have a separate file system for log daemons, so that your
root file system is safeguarded from being filled up.)

2. The following stanza was added to the /etc/syslog.conf file:

*.debug /var/nfs4log/syslog.out rotate time 1d archive /var/nfs4log/archive/

3. We then refreshed the syslogd using the refresh -s syslog command to
activate these changes immediately on the running system.

Using the setting for syslogd as given in step 2 may log more information as
needed while running a system in production mode. Thus you can set back the
log level to ERROR in the /etc/syslog.conf file to limit the amount of data written.
The new stanza will now show:

*.error /var/nfs4log/syslog.out rotate time 1d archive /var/nfs4log/archive/

The changes will take affect only after you refresh the syslog daemon.

5.2 Using NFS V4 as you did with NFS V3
NFS V4 still supports the legacy file system export and mount model because it
is common in NFS V3. There are no changes required to your server /etc/exports
file or to the client /etc/filesystems file or automount map. This is true only if you
are not planning to use the new features available with NFS V4.

Example 5-2 shows the server view of NFS V3 exported file systems.

Example 5-2 Server output of NFS V3 exported file systems on AIX 5.3

pg /etc/exports
/exports -rw
/exports/home -rw
/exports/project/projA -ro
/exports/project/projB -ro
/usr/ldap -vers=3,ro
#
#exportfs -va

Tip: We recommend that you always enable syslog logging when carrying out
your NFS setup. It will be beneficial in obtaining detailed messages for the
errors you see when running NFS commands. You can disable the logging
when you are satisfied that your environment is working as you expect it to.
122 Securing NFS in AIX

Exported /exports
Exported /exports/home
Exported /exports/project/projA
Exported /exports/project/projB
Exported /usr/ldap
#

Example 5-3 shows the client view for the NFS V3 mounted file systems from
server nfs404.

Example 5-3 Client output for NFS V3 mounted file system on AIX 5.3

showmount -e nfs404
export list for nfs404:
/exports (everyone)
/exports/home (everyone)
/exports/project/projA (everyone)
/exports/project/projB (everyone)
/usr/ldap (everyone)
mount nfs404:/exports /nfs
mount nfs404:/exports/home /nfs/home
mount nfs404:/exports/project/projA /nfs/project/projA
mount nfs404:/exports/project/projB /nfs/project/projB
cd /nfs/project/projB
df .
Filesystem 512-blocks Free %Used Iused %Iused Mounted on
nfs404:/exports/project/projB 65536 64856 2% 5 1%
/nfs/project/projB

5.3 How to unmount an exported NFS V4 file system
With NFS V3 you could unmount any physical file systems NFS exported, on the
NFS server, without first unexporting it. With NFS V4 this is no longer possible.
As long as the file systems are exported they are locked within the server code
and cannot be unmounted. To do so, you have to unexport the file system first.

Example 5-4 Unmount of exported file systems on NFS V4 server

exportfs
/exports -vers=4,rw
/exports/home -vers=4,rw
/exports/project/projA -vers=4,ro
/usr/ldap -vers=3,ro
#
umount /exports/project/projB
umount: 0506-349 Cannot unmount /dev/fslv01: The requested resource is busy.
 Chapter 5. Sample implementation scenarios 123

#
exportfs -u /exports/project/projB
umount /exports/project/projB

5.4 Setting up the NFS domain name
As described in 4.2.2, “Choosing your NFS domain” on page 98, it is mandatory
to have the NFS domain name set before you can use NFS V4. The current
setting can be checked using chnfsdom or smitty chnfsdom commands.

If the NFS domain is not set, the output looks similar to Example 5-5.

Example 5-5 chnfsdom sample output

chnfsdom
Current local domain: N/A

In our sample environment, we already set the NFS domain so that the output
looks like Example 5-6.

Example 5-6 Setting the NFS domain on the server

chnfsdom
Current local domain:
nfs.ibm.com

We started the nfsrgyd by using the command startsrc -s nfsrgyd.

Example 5-7 startup of the nfsrgyd daemon

startsrc -s nfsrgyd
0513-059 The nfsrgyd Subsystem has been started. Subsystem PID is 14496.

5.5 The pseudo-root FS
The mechanism and meaning of the NFS V4 pseudo-root has been described in
2.6.3, “Better namespace handling” on page 25. This chapter shows how to set
up the pseudo-root and point out the advantages compared to the classic NFS
V3 export model.

Note: As this book is being written, changing the NFS domain does not
recycle or start nfsrgyd. You have to manually start or recycle the daemon.
124 Securing NFS in AIX

5.5.1 Setting up the pseudo-root FS on an NFS V4 server
The pseudo-root FS setup on an NFS V4 server can be achieved easily. This
requires that the pseudo-root directory be available and that all exported file
systems are locally mounted within this directory.

By default, the root directory / is defined and exported as the pseudo-root FS
from the server. This can be seen when the nfsd -getnodes command is
executed on the running system. Example 5-8 shows the output.

Example 5-8 Output of command nfsd -getnodes

$nfsd -getnodes
#root:public
/:/
$

Using the -nfsroot option in file /etc/exports
Perform these steps on the server to set the pseudo-root to /exports and export it
to the clients:

1. Check the current settings for pseudo-root by running the nfsd -getnodes
command.

2. Check that no NFS file systems are exported by using the exportfs
command. If there are exported file systems, run the exportfs -ua command
to unexport them.

3. Change the /etc/exports file so that the option /exports -nfsroot is listed in the
first place.

Example 5-9 shows all commands and system responses when changing the
pseudo-root FS using -nfsroot option.

Example 5-9 Changing the pseudo-root on an NFS V4 server using -nfsroot

nfsd -getnodes
#root:public
/:/
#
exportfs -ua
exportfs
exportfs: nothing exported
pg /etc/exports

Note: There are several ways to change the pseudo-root on the server. We
recommend using the -nfsroot option within the /etc/exports file; however, all
NFS exported server file systems have to be unexported or this will not work.
 Chapter 5. Sample implementation scenarios 125

#
/exports -nfsroot
/local/trans -vers=4,rw,exname=/exports/trans
/local/dept -vers=4,rw,exname=/exports/dept
/local/home -vers=4,rw,exname=/exports/home
/usr/codeshare/ThirdPartyProgs -vers=4,ro,exname=/exports/ThirdPartyProgs
#
exportfs -va
exported /local/trans
exported /local/dept
exported /local/home
exported /usr/codeshare/ThirdPartyProgs
nfsd -getnodes
#root:public
/exports:/exports
#
#ps -ef |grep nfsd
root 270550 159906 0 17:12:13 - 0:00 /usr/sbin/nfsd -root / 3891

Changing the nfsd daemon
Perform these steps on the server to set the pseudo-root to /exports and export it
to the clients:

1. Check the current settings for pseudo-root by running the nfsd -getnodes
command.

2. Check that no NFS file systems are exported by using the exportfs
command. If there are exported file systems, run the exportfs -ua command
to unexport them.

3. Stop all NFS server processes by running /etc/nfs.clean

4. Change the pseudo-root with chnfs -r /exports or smitty chrootfh

The chnfs command:

a. Changes the entries within the AIX Subsystem Resource for nfsd. This
can be verified using the lssrc -Ss nfsd command.

b. Starts the nfsd in command line mode outside the control of the
Subsystem Resource Controller.

We have two options to proceed:

– Reboot the system so that all changes take effect.

Important: Although the nfsd process still shows the option -root as /
the actual pseudo-root FS has been changed to /exports. This has been
verified by running the nfsd -getnodes command.
126 Securing NFS in AIX

– Stop all NFS processes using /etc/nfs.clean and restart NFS using
/etc/rc.nfs.

We decided to use the second option, and we continue with Step 6.

5. Verify the change using the nfsd -getnodes command.

6. Stop all NFS processes on the system using /etc/nfs.clean

7. Start all NFS server processes with /etc/rc.nfs

Example 5-10 shows all commands and system responses when changing the
pseudo-root FS using chnfs.

Example 5-10 Changing the pseudo-root on an NFS V4 server using chnfs

nfsd -getnodes
#root:public
/:/
#
exportfs
/exports -vers=4,rw
/exports/project/projA -vers=4,rw
/exports/project/projB -vers=4,rw
#
exportfs -ua
#
exportfs
exportfs: 1831-182 nothing exported
#
/etc/nfs.clean
nfs_clean: Stopping NFS/NIS Daemons
0513-044 The nfsd Subsystem was requested to stop.
0513-044 The biod Subsystem was requested to stop.
0513-044 The rpc.lockd Subsystem was requested to stop.
0513-044 The rpc.statd Subsystem was requested to stop.
0513-044 The rpc.mountd Subsystem was requested to stop.
0513-085 The ypserv Subsystem is not on file.
0513-004 The Subsystem or Group, ypbind, is currently inoperative.
0513-085 The yppasswdd Subsystem is not on file.
0513-085 The ypupdated Subsystem is not on file.
#
chnfs -r /exports
0513-077 Subsystem has been changed.
#
nfsd -getnodes
#root:public
/exports:/exports
#
/etc/nfs.clean
Stopping NFS/NIS Daemons
 Chapter 5. Sample implementation scenarios 127

0513-004 The Subsystem or Group, nfsd, is currently inoperative.
0513-004 The Subsystem or Group, biod, is currently inoperative.
0513-004 The Subsystem or Group, rpc.lockd, is currently inoperative.
0513-004 The Subsystem or Group, rpc.statd, is currently inoperative.
0513-004 The Subsystem or Group, rpc.mountd, is currently inoperative.
0513-004 The Subsystem or Group, ypbind, is currently inoperative.
#
/etc/rc.nfs
Starting NFS services:
0513-059 The biod Subsystem has been started. Subsystem PID is 266398.
0513-029 The nfsrgyd Subsystem is already active.
Multiple instances are not supported.
0513-059 The nfsd Subsystem has been started. Subsystem PID is 303296.
0513-059 The rpc.mountd Subsystem has been started. Subsystem PID is 258216.
0513-059 The rpc.statd Subsystem has been started. Subsystem PID is 262314.
0513-059 The rpc.lockd Subsystem has been started. Subsystem PID is 274644.
0513-029 The gssd Subsystem is already active.
Multiple instances are not supported.
Completed NFS services.
#
ps -ef |grep nfs
 root 286874 204944 0 09:48:14 - 0:00 /usr/sbin/nfsrgyd
 root 303296 204944 0 09:53:06 - 0:00 /usr/sbin/nfsd -root /exports
3891
 root 352494 344286 0 09:53:25 pts/0 0:00 grep nfs
#
lssrc -g nfs
Subsystem Group PID Status
 biod nfs 274482 active
 nfsd nfs 266406 active
 rpc.mountd nfs 249996 active
 nfsrgyd nfs 172234 active
 rpc.lockd nfs 254144 active
 rpc.statd nfs 245884 active
 gssd nfs inoperative
#

A simple shell script called SetNewRootFS.ksh to achieve the above described
changes is available in “Change the pseudo-root FS sample script” on page 256.

5.5.2 Advantages of using the NFS V4 pseudo-root
As already described in 2.6.3, “Better namespace handling” on page 25, there
are several advantages to using NFS V4 with pseudo-root. This section shows

Note: The gssd daemon is not running because we are not using
RPCSEC_GSS at this point in our sample environment.
128 Securing NFS in AIX

examples of these advantages. We assume that the NFS V4 server pseudo-root
FS has already been set to /exports.

On the server, we created three file systems (Example 5-11), which were
mounted under the /exports directory using following subdirectories:

� /exports/home
� /exports/project/projA
� /exports/project/projB

Example 5-11 Sample df output from the NFS V4 server

/dev/fslv00 65536 64832 2% 5 1% /exports/project/projA
/dev/fslv01 65536 64864 2% 4 1% /exports/project/projB
/dev/fslv02 65536 64864 2% 4 1% /exports/home

To be able to export these file systems to the clients, we created the /etc/exports
file on the server using smitty mknfsexp with the entries in Example 5-12.

Example 5-12 Output of file /etc/exports for pseudo-root

pg /etc/exports
/exports -vers=4,rw
/exports/home -vers=4,rw
/exports/project/projA -vers=4,ro
/exports/project/projB -vers=4,ro

In Example 5-12, the entries are similar to the /etc/exports file used with NFS V3
except for the fact that option vers=4 indicates that the export is of type NFS V4
only. In addition, you still have to export every local file system so that the NFS
server is capable of internally rendering and crossing the file system borders.

The main changes are seen on the client side. They are:

1. Only a single mount command is required enable retrieval and changing of
directory to all available file systems.

2. With NFS V3, the same functionality is not available, so to mount all file
systems, a mount command for each exported file system is required.

In our example, only the following command is needed on the client to make the
pseudo-root FS and all exported file systems beneath available to the client:

mount -o vers=4 nfs404:/ /nfs

On traversal of the mount, for example, from /nfs to /nfs/project/projA, no
subsequent mounts are required as NFS V4 will handle this by use of the fsid().
 Chapter 5. Sample implementation scenarios 129

Example 5-13 shows the output of an NFS V4 client accessing the pseudo-root
FS.

Example 5-13 Client output while accessing a pseudo-root FS

mount -o vers=4 nfs404:/ /nfs
cd /nfs
ls
dept home project tt
cd project/projA
ls -l
total 0
drwxr-xr-x 2 nobody system 256 Jul 26 17:43 Targets
drwxr-xr-x 2 root system 256 Jul 26 17:42 lost+found
#
mount
node mounted mounted over vfs date options
-------- --------------- --------------- ------ ---------------------
nfs404 / /nfs nfs4 Jul 29 14:56 vers=4
#
pwd
/nfs/project/projA
#
df .
Filesystem 512-blocks Free %Used Iused %Iused Mounted on
[NFSv4] 65536 64832 2% 5 1% .
#
nfs4cl showfs
Server Remote Path fsid Local Path
-------- --------------- --------------- ---------------
nfs404 10:13 /nfs/projB
nfs404 10:12 /nfs/projA
nfs404 10:17 /nfs/home
nfs404 / 10:4 /nfs

You may have recognized that the command df is not useful in this context. That
is why the nfs4cl command is recommended.

Note: This works only with NFS V4 exported file systems. If you use NFS V3
by default on the client, the mount command will fail with this message:

mount nfs404:/ /nfs
mount: 1831-011 access denied for nfs404:/
mount: 1831-008 giving up on:
nfs404:/
The file access permissions do not allow the specified action.
130 Securing NFS in AIX

5.5.3 Setting up the alias tree extension on an NFS V4 server
With reference to the description in 4.7, “NFS protocols and namespace
considerations” on page 112, the alias tree model seems to be the best model for
using pseudo-root FS to create a global NFS namespace. The following steps
show how to set up the alias tree model on one of our sample servers.

We created three new file systems on the server that does not share the same
root mount path:

� /local/trans
� /local/trans1
� /usr/codeshare/ThirdPartyProgs

Example 5-14 Sample df output from NFS V4 server for alias tree model

/dev/exname_lv 65536 63376 4% 20 1% /local/trans
/dev/exname2_lv 65536 63392 4% 18 1% /local/trans1
/dev/exname3_lv 65536 63392 4% 18 1%
/usr/codeshare/ThirdPartyProgs

The second step is to generate a new /etc/exports file and include the exname
option as shown in Example 5-15.

Example 5-15 Sample file /etc/exports using the exname option

/local -vers=4,rw,exname=/exports/local
/local/trans -vers=4,rw,exname=/exports/local/trans
/local1/trans1 -vers=4,rw,exname=/exports/local1/trans1
/usr/codeshare/ThirdPartyProgs
-vers=4,ro,exname=/exports/usr/codeshare/ThirdPartyProgs

Finally, we export the new file systems to the clients using the exportfs -va
command as shown in Example 5-16.

Example 5-16 Exporting file systems using exportfs -va

root@nfs402 #exportfs -va
exportfs: 1831-187 re-exported /local
exportfs: 1831-187 re-exported /local/trans
exportfs: 1831-187 re-exported /local1/trans1
exportfs: 1831-187 re-exported /usr/codeshare/ThirdPartyProgs

Note: The described pseudo-root FS setup cannot coexist with the alias tree
model. You have to choose between the two models.
 Chapter 5. Sample implementation scenarios 131

You can use this command to mount the pseudo-root FS on the client:

mount -o vers=4,sec=krb5 nfs402:/ /nfs

The global namespace is available using the pseudo-root FS - alias tree model.

In Example 5-17 we show the access to the alias tree on a NFS V4 client.

Example 5-17 Client view of the alias tree

mount
 node mounted mounted over vfs date options
-------- --------------- --------------- ------ ------------ ---------------
nfs402 / /nfs nfs4 Aug 02 17:26 vers=4,

find /nfs -print
/nfs
/nfs/usr
/nfs/usr/codeshare
/nfs/usr/codeshare/ThirdPartyProgs
/nfs/local1
/nfs/local1/trans1
/nfs/local1/trans1/trash
/nfs/local
/nfs/local/trans
/nfs/local/trans/var
/nfs/local/trans/trash
/nfs/local/trans/translog
/nfs/local/trans1
nfs4cl showfs
#
Server Remote Path fsid Local Path
-------- --------------- --------------- ---------------
nfs402 10:15 /nfs/trans
nfs402 10:16 /nfs/trans1
nfs402 10:17 /nfs/ThirdPartyProgs
nfs402 / 10:4 /nfs
nfs403 /exports/acltest 10:13 /mntjt
pwd
/nfs/local1/trans1
df .
Filesystem 512-blocks Free %Used Iused %Iused Mounted on
[NFSv4] 65536 63392 4% 18 1% .
#

132 Securing NFS in AIX

A more realistic example was discussed in 2.6.3, “Better namespace handling”
on page 25 and will be covered in this chapter. On the server that does not share
the same root mount path, we created four new file systems called:

� /local/trans
� /local/home
� /local/dept
� /usr/codeshare/ThirdPartyProgs

The intention is to map these directories on the client in a global namespace
called /nfs with the following directory structure:

� /nfs/home
� /nfs/home
� /nfs/dept
� /nfs/ThirdPartyProgs

To do so we created the following /etc/exports file on the server and included the
exname option shown in Example 5-18.

Example 5-18 Sample alias tree file /etc/exports file on the server

/local/trans -vers=4,rw,exname=/exports/trans
/local/dept -vers=4,rw,exname=/exports/dept
/local/home -vers=4,rw,exname=/exports/home
/usr/codeshare/ThirdPartyProgs -vers=4,ro,exname=/exports/ThirdPartyProgs

To mount the pseudo-root FS on the client, the following command is used:

mount -o vers=4,sec=krb5 nfs402:/ /nfs

The Global Namespace is made available using the pseudo-root FS - alias tree
model.

Example 5-19 shows the access to the alias tree on an NFS V4 client.

Example 5-19 Extended client view of the pseudo-root FS - alias tree model

#mount -o sec=krb5,vers=4 nfs404:/ /nfs
#
#cd /nfs
#
find . -print
.
./ThirdPartyProgs
./ThirdPartyProgs/bin
./ThirdPartyProgs/src
./ThirdPartyProgs/contrib
./home
./home/sally
 Chapter 5. Sample implementation scenarios 133

./home/bob

./home/mary

./home/joe

./dept

./dept/eng

./dept/hr

./dept/sales

./trans

./trans/lost+found
#
cd /nfs/home
#
ls -ltr
total 40
drwxrwx--- 2 root system 512 Aug 12 18:41 lost+found
drwxr-sr-x 2 sally staff 512 Aug 12 18:50 sally
drwxr-sr-x 2 bob staff 512 Aug 12 18:50 bob
drwxr-sr-x 2 mary staff 512 Aug 12 18:50 mary
drwxr-sr-x 2 joe staff 512 Aug 12 18:50 joe
mount
 node mounted mounted over vfs date options
-------- --------------- --------------- ------ ------------ ---------------
 /dev/hd4 / jfs Aug 10 14:59 rw,log=/dev/hd8
 /dev/hd2 /usr jfs Aug 10 14:59 rw,log=/dev/hd8
 /dev/hd9var /var jfs Aug 10 14:59 rw,log=/dev/hd8
 /dev/hd3 /tmp jfs Aug 10 14:59 rw,log=/dev/hd8
 /dev/hd1 /home jfs Aug 10 14:59 rw,log=/dev/hd8
 /proc /proc procfs Aug 10 14:59 rw
 /dev/hd10opt /opt jfs Aug 10 14:59 rw,log=/dev/hd8
 /dev/log_lv /var/nfs4log jfs Aug 10 14:59 rw,log=/dev/hd8
nfs404 / /nfs nfs4 Aug 10 15:07 vers=4,sec=krb5
#
nfs4cl showfs

Server Remote Path fsid Local Path
-------- --------------- --------------- ---------------
nfs404 10:12 /nfs/trans
nfs404 10:18 /nfs/dept
nfs404 10:17 /nfs/home
nfs404 10:19 /nfs/ThirdPartyProgs
nfs404 / 10:4 /nfs

5.6 Setting up the NAS with a legacy database
In this section we describe the sample setup of IBM NAS Version 1.4 on AIX with
a KDC legacy database. The identification of the user will be done using
134 Securing NFS in AIX

standard AIX local mechanisms: by using the /etc/passwd file entries. This
means that we do not use a centralized user identification registry such as LDAP
or NIS.

The following definitions are used in the example:

NFS and KDC server host name = nfs403, OS: AIX 5.3
NFS client host name = nfs406, OS: AIX 5.3
NFS Domain Name itsc.austin.ibm.com
Realm Name REALM1.IBM.COM

Figure 5-1 gives a better view of the setup.

Figure 5-1 Sample AIX environment with AIX KDC server

5.6.1 Setup of a KDC server
In this section, we describe the minimal setup of the KDC server using IBM NAS
V1.4 so that NFS V4 can use RPCSEC_GSS for authentication. Further
information about IBM NAS and the KDC infrastructure can be found in IBM
Network Authentication Service Version 1.4 for AIX, Linux, and Solaris
Administrator’s and User’s Guide, which is delivered with the krb5.doc.en_US file
set.

5.6.2 Installing the IBM NAS file sets
The IBM NAS Version1.4 file sets are delivered with the AIX 5.3 Expansion CD.
They can be installed using smit or the installp command. We used the
command line interface for installation. The command we used was:

installp -aqXgd . krb5.server modcrypt.base
 Chapter 5. Sample implementation scenarios 135

Set up the KDC server
To configure NAS to use the legacy database, which is stored on the local file
system, we used the following command:

mkkrb5srv -r REALM2.IBM.COM -d itsc.austin.ibm.com -s \
nfs403.itsc.austin.ibm.com

While running this command, the system asks for a Master Database password
and a password for the administrative principal called admin. Record the name
and chosen password in an secure place as these principals are essential for
your NAS environment.

Example 5-20 shows the output from the mkkrb5srv command with the options
shown above.

Example 5-20 Output of command mkkrb5srv on the KDC server

mkkrb5srv -r REALM2.IBM.COM -d itsc.austin.ibm.com \
-s nfs403.itsc.austin.ibm.com

 Fileset Level State Description
 --
Path: /usr/lib/objrepos
 krb5.server.rte 1.4.0.0 COMMITTED Network Authentication Service
 Server

Path: /etc/objrepos
 krb5.server.rte 1.4.0.0 COMMITTED Network Authentication Service
 Server
The -s option is not supported.
The administration server will be the local host.
Initializing configuration...
Creating /etc/krb5/krb5_cfg_type...
Creating /etc/krb5/krb5.conf...
Creating /var/krb5/krb5kdc/kdc.conf...
Creating database files...
Initializing database '/var/krb5/krb5kdc/principal' for realm 'REALM2.IBM.COM'
master key name 'K/M@REALM2.IBM.COM'
You are prompted for the database Master Password.
It is important that you DO NOT FORGET this password.
Enter database Master Password:
Re-enter database Master Password to verify:
WARNING: no policy specified for admin/admin@REALM2.IBM.COM;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Enter password for principal "admin/admin@REALM2.IBM.COM":
Re-enter password for principal "admin/admin@REALM2.IBM.COM":
Principal "admin/admin@REALM2.IBM.COM" created.
Creating keytable...
136 Securing NFS in AIX

Creating /var/krb5/krb5kdc/kadm5.acl...

Starting krb5kdc...
krb5kdc was started successfully.
Starting kadmind...
kadmind was started successfully.
The command completed successfully.
Restarting kadmind and krb5kdc

The same can be achieved by running the NAS command:

config.krb5 -S -d itsc.austin.ibm.com -r REALM2.IBM.COM

In addition, the two lines shown in Example 5-21 are added automatically to the
/etc/inittab file so that the KDC server is automatically started after system
reboot.

Example 5-21 /etc/inittab entries for NAS

lsitab krb5kdc
krb5kdc:2:once:/usr/krb5/sbin/krb5kdc
#
lsitab kadm
kadm:2:once:/usr/krb5/sbin/kadmind
#

After successful installation and configuration of the KDC, on the server, the files
shown in Figure 5-1 are installed in the /etc/krb5 directory.

Table 5-1 Additional files installed at KDC configuration

Example 5-22 on page 138 shows the contents of the /etc/krb5/krb5.conf file,
and Example 5-23 on page 138 shows the contents of the
/etc/krb5/krb5_cfg_type file.

Attention: If you intend to install the KDC on an NFS V4 server, be aware that
after activating the KDC server your NFS V4 server will not work properly until
you have completed all further steps.

krb5.conf Contains general information for clients and servers. It must reside
on each system that contains the administration server, a KDC, or
a client. If two or more Network Authentication Service servers or
clients reside on the same system, they must share the same
krb5.conf file.

krb5_cfg_type Determines the configuration type of the machine (master, slave, or
client). This file must reside on the system that contains the
administration server.
 Chapter 5. Sample implementation scenarios 137

Example 5-22 Sample /etc/krb5/krb5.conf file on the KDC server

cat krb5.conf
[libdefaults]
 default_realm = REALM2.IBM.COM
 default_keytab_name = FILE:/etc/krb5/krb5.keytab
 default_tkt_enctypes = des3-cbc-sha1 arcfour-hmac aes256-cts
des-cbc-md5 des-cbc-crc
 default_tgs_enctypes = des3-cbc-sha1 arcfour-hmac aes256-cts
des-cbc-md5 des-cbc-crc

[realms]
 REALM2.IBM.COM = {
 kdc = nfs404.itsc.austin.ibm.com:88
 admin_server = nfs404.itsc.austin.ibm.com:749
 default_domain = ibm.com
 }

[domain_realm]
 .ibm.com = REALM2.IBM.COM
 nfs404.itsc.austin.ibm.com = REALM2.IBM.COM

[logging]
 kdc = FILE:/var/krb5/log/krb5kdc.log
 admin_server = FILE:/var/krb5/log/kadmin.log
 default = FILE:/var/krb5/log/krb5lib.log
#

Example 5-23 Sample contents of file /etc/krb5/krb5_cfg_type on the KDC server

cat /etc/krb5/krb5_cfg_type
master

5.6.3 Initial basic KDC functions test
Before continuing, we test the initial setup of the KDC server by using the
following command sequence to verify that all required processes for the KDC
server have started:

ps -ef |grep krb |grep -v grep

This verifies the logon principal as admin:

kinit admin/admin@REALM2.IBM.COM

Note: The default_tkt_enctypes and default_tgs_enctypes can be reduced to
show only des-cbc-crc and des-cbc-md5, but keep in mind that this may only
be correct with NFS V4.
138 Securing NFS in AIX

This verifies that a ticket has been granted to the admin principal:

klist

Example 5-24 shows the output of the above mentioned commands.

Example 5-24 Basic verification of KDC server

ps -ef |grep krb |grep -v grep
 root 299160 1 0 18:20:51 - 0:00 /usr/krb5/sbin/krb5kdc
 root 315554 1 0 18:20:51 - 0:00 /usr/krb5/sbin/kadmind
#
kinit admin/admin@REALM2.IBM.COM
Password for admin/admin@REALM2.IBM.COM:
#
klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: admin/admin@REALM2.IBM.COM

Valid starting Expires Service principal
07/28/04 14:16:18 07/29/04 14:16:15 krbtgt/REALM2.IBM.COM@REALM2.IBM.COM

5.6.4 Create user principals on the KDC server
In this section, we create Kerberos user principals that match the existing UNIX
user names. The principal name will be mapped to the user name by NFS to
determine the UNIX credential associated with the principal. In general,
principals can be added on the KDC server using this command:

kadmin.local -> add_principal (or addprinc)

In Example 5-25, the principal named sally is added to the KDC database via
command line. This requires that you have already authenticated to Kerberos
using an administrative principal, for example admin/admin.

Example 5-25 Adding the principal named sally

kadmin.local
kadmin.local: addprinc -e des-cbc-crc:normal sally
WARNING: no policy specified for sally@REALM2.IBM.COM;

Note: kadmin.local can only be run on the master KDC, whereas kadmin can
be run on any machine that is part of the Kerberos realm. We use both
variations of the command in examples in this chapter.

Note: We assume that the local AIX user sally already exists on the KDC
server. In addition, this user name must also exist on all NFS V4 clients.
 Chapter 5. Sample implementation scenarios 139

 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Enter password for principal "sally@REALM2.IBM.COM":
Re-enter password for principal "sally@REALM2.IBM.COM":
Principal "sally@REALM2.IBM.COM" created.
#

To verify the newly created principal, we use the kadmin.local command as
shown in Example 5-26. The kadmin.local interface also gives the options
listprincs, get_principal, and getprinc to achieve the result.

Example 5-26 Output of kadmin.local getprinc command

kadmin.local: getprinc sally
Principal: sally@REALM2.IBM.COM
Expiration date: [never]
Last password change: Wed Jul 28 14:58:25 CDT 2004
Password expiration date: [none]
Maximum ticket life: 1 day 00:00:00
Maximum renewable life: 7 days 00:00:00
Last modified: Wed Jul 28 14:58:25 CDT 2004 (admin/admin@REALM2.IBM.COM)
Last successful authentication: [never]
Last failed authentication: [never]
Failed password attempts: 0
Number of keys: 1
Key: vno 1, DES cbc mode with CRC-32,
no salt

Attributes:
 REQUIRES_PRE_AUTH
Policy: [none]

Example 5-26 shows that the number of keys equals 1, and the standard
encryption for this principal is set to Single-DES. You could have principals with
different number of keys and standard encryption types within the KDC.

In the next step we verify that the user can be authenticated using the created
principle sally as shown in Example 5-27.

Example 5-27 Verify the principal sally by use of kinit

kinit sally@REALM2.IBM.COM
Password for sally@REALM2.IBM.COM:
#
klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: sally@REALM2.IBM.COM
140 Securing NFS in AIX

Valid starting Expires Service principal
07/28/04 15:17:09 07/29/04 15:17:09 krbtgt/REALM2.IBM.COM@REALM2.IBM.COM
 Renew until 07/29/04 15:17:22

This procedure has to be executed for every AIX user in your environment. For a
large number of users you may want to create a script to automate this process.
Example 5-28 should give you an idea of how to achieve this.

Example 5-28 User principal creation shell script

#/bin/ksh
NAME=joe
NPASSWD=”new01new”
/usr/krb5/sbin/kadmin.local <<EOF
add_principal -e des-cbc-crc:normal -pw ${NPASSWD} $NAME
EOF

You also have the option to run the utility mkseckrb5, delivered with the AIX Base
Operating System bos.rte.security file set, to import all existing users from the
local system into the KDC database. For further details, see the commands
reference chapter of the AIX 5.3 online documentation.

5.6.5 Create the NFS server principals on the KDC server
For each NFS server in your KDC environment, you must define a principal of
type nfs/<full_qualified_hostname>@REALM, for example:

nfs/nfs404.itsc.austin.ibm.com@REALM1.ITSC.AUSTIN.IBM.COM

The setup for this principal is slightly different from the user principal setup, as we
use a random password instead of one that is user-defined.

Example 5-29 Creation of NFS server principal nfs/nfs@REALM

/usr/krb5/sbin/kadmin
kadmin.local: add_principal -e des-cbc-crc:normal -randkey
nfs/nfs404.itsc.austin.ibm.com
WARNING: no policy specified for nfs/nfs404.itsc.austin.ibm.com@REALM2.IBM.COM;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Principal "nfs/nfs404.itsc.austin.ibm.com@REALM2.IBM.COM" created.

Note: This script will run only if you are already authenticated as admin. Using
this flag in a shell script can be dangerous if unauthorized users gain read
access to this script. The script is only provided to give you an idea of how this
can be achieved.
 Chapter 5. Sample implementation scenarios 141

kadmin.local: getprinc nfs/nfs404.itsc.austin.ibm.com
Principal: nfs/nfs404.itsc.austin.ibm.com@REALM2.IBM.COM
Expiration date: [never]
Last password change: Wed Jul 28 16:21:44 CDT 2004
Password expiration date: [none]
Maximum ticket life: 1 day 00:00:00
Maximum renewable life: 7 days 00:00:00
Last modified: Wed Jul 28 16:21:44 CDT 2004 (admin/admin@REALM2.IBM.COM)
Last successful authentication: [never]
Last failed authentication: [never]
Failed password attempts: 0
Number of keys: 1
Key: vno 2, DES cbc mode with CRC-32,
no salt

Attributes:

Policy: [none]

5.7 Setting up an NFS V4 server with NAS on a different
KDC server

In this section, we demonstrate the steps that are required to set up an NFS V4
server in your NAS environment by using the KDC server created in “Installing
the IBM NAS file sets” on page 135 to act as a NFS V4 server as well.

5.7.1 Create the NFS server keytab file entry
As described previously, the principal for the NFS server has already been
created as:

nfs/nfs404.itsc.austin.ibm.com@REALM1.IBM.COM

The next step is to set up a keytab entry on the NFS V4 server using the kadmin
command as shown in Example 5-30.

Example 5-30 Sample ktadd to create an NFS server keytab file

kadmin: ktadd nfs/nfs404.itsc.austin.ibm.com
Entry for principal nfs/nfs404.itsc.austin.ibm.com with kvno 3, encryption type
Triple DES cbc mode with HMAC/sha1 added to keytab
WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs/nfs404.itsc.austin.ibm.com with kvno 3, encryption type
ArcFour with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
142 Securing NFS in AIX

Entry for principal nfs/nfs404.itsc.austin.ibm.com with kvno 3, encryption type
AES-256 CTS mode with 96-bit SHA-1 HMAC added to keytab
WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs/nfs404.itsc.austin.ibm.com with kvno 3, encryption type
DES cbc mode with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.

This command created the /etc/krb5/krb5.keytab file on the local system.

5.7.2 Check the NFS V4 server before client access
To be sure that the setup on the NFS V4 server is correct, we check the following:

� Are the keytab entries valid? Use the ktutil command.

Example 5-31 Check of valid keytab on the NFS V4 server

/usr/krb5/sbin/ktutil
ktutil: read_kt /etc/krb5/krb5.keytab
ktutil: l
slot KVNO Principal
------ ------ --
 1 3 nfs/nfs404.itsc.austin.ibm.com@REALM2.IBM.COM
 2 3 nfs/nfs404.itsc.austin.ibm.com@REALM2.IBM.COM
 3 3 nfs/nfs404.itsc.austin.ibm.com@REALM2.IBM.COM
 4 3 nfs/nfs404.itsc.austin.ibm.com@REALM2.IBM.COM

� Can the server principal get valid tickets? Use the kinit command.

Example 5-32 kinit using the server keytab file

kinit -kt /etc/krb5/krb5.keytab\ nfs/nfs404.itsc.austin.ibm.com
#
klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: nfs/nfs404.itsc.austin.ibm.com@REALM2.IBM.COM

Valid starting Expires Service principal
07/28/04 17:12:16 07/29/04 17:12:16 krbtgt/REALM2.IBM.COM@REALM2.IBM.COM
#

5.7.3 Set up the NFS registry daemon
The NFS domain name has to be set. The current setting can be checked using
chnfsdom or smitty chnfsdom commands.
 Chapter 5. Sample implementation scenarios 143

If the NFS domain is not set, the output appears as:

chnfsdom
Current local domain: N/A

In our sample environment, we already set the NFS domain so that the output
appears as:

chnfsdom
Current local domain: nfs.ibm.com

We started the nfsrgyd by using the startsrc -s nfsrgyd command:

startsrc -s nfsrgyd
0513-059 The nfsrgyd Subsystem has been started. Subsystem PID is 14496.

5.7.4 Set up the gssd daemon on the NFS V4 server
To enable NFS V4 using RPSEC-GSS, we have to create the map file between
the server’s keytab file and the NFS server principal. This is done using the
nfshostkey command as shown in Example 5-33.

Example 5-33 Creating the server’s hostkey map file

nfshostkey -p nfs/nfs404.itsc.austin.ibm.com -f /etc/krb5/krb5.keytab
#
nfshostkey -l
nfs/nfs404.itsc.austin.ibm.com
/etc/krb5/krb5.keytab
#

To set up the gssd daemon to start up automatically, run the chnfs -S -B or
smitty addsecurity command. You have to repeat this setup for each NFS V4
server in your infrastructure.

The next step is to create the file /etc/nfs/realm.map. Use the chnfsrtd
command. In our sample environment, the realm is REALM2.IBM.COM and the
NFS domain is itsc.austin.ibm.com.

We used the command chnfsrtd -a REALM2.IBM.COM itsc.austin.ibm.com or
smit chnfsrtd.

Example 5-34 Setting the realm.map file on the NFS V4 server

cat /etc/nfs/realm.map
realm2.ibm.com itsc.austin.ibm.com

Note: Changing the NFS domain does not recycle or start the nfsrgyd. You
have to start and recycle the daemon manually.
144 Securing NFS in AIX

chnfsrtd
realm2.ibm.com itsc.austin.ibm.com

5.8 Setting up an NFS V4 client with NAS
In this section, we describe the steps that are required to set up a client system
to use the created NAS and NFS V4 environment. We describe the basic
required steps as well as the differences between a full client and slim client.

5.8.1 General steps for all types of clients
In general, the steps required to set up an NFS V4 client with NAS support are:

1. Install the NAS file set from the AIX 5.3 Expansion CD.

2. Set the NFS domain using smit chnfsdom or chnfsdom command.

3. Set the NFS domain-to-realm mapping using chnfsrtd.

4. Set up the NAS environment:

– Full client: Create the NFS host principal and keytab file.

– Slim client: Retrieve the required configuration files from a master.

For details about slim and full clients, see 4.4.4, “NFS client considerations
when using Kerberos” on page 108 in this book.

5. Configure the gssd daemon after the Kerberos installation and verification
have been completed.

5.8.2 Install the NAS client code
Next, we install IBM NAS Version 1.4 from the AIX 5.3 Expansion CD. Install the
following file sets using the smit or installp commands:

krb5.client Delivers all required client commands and libraries.
modcrypt.base Delivers the required kernel extension for using NFS V4.

Example 5-35 shows the installation process and the file sets that are installed
as part of the above.

Example 5-35 NAS client file set installation

installp -aqXgYd . krb5.client modcrypt.base
+---+

Note: The realm entry in the /etc/nfs/realm.map file is not case-sensitive.
 Chapter 5. Sample implementation scenarios 145

Installation Summary

Name Level Part Event Result

modcrypt.base.lib 5.3.0.0 USR APPLY SUCCESS
modcrypt.base.includes 5.3.0.0 USR APPLY SUCCESS
krb5.client.rte 1.4.0.0 USR APPLY SUCCESS
krb5.client.samples 1.4.0.0 USR APPLY SUCCESS
krb5.client.rte 1.4.0.0 ROOT APPLY SUCCESS

5.8.3 Set up the NFS domain
In Example 5-36, we set the NFS domain to itsc.austin.ibm.com by using the
chnfsdom command.

Example 5-36 Client NFS domain setup

chnfsdom
Current local domain: N/A
#
chnfsdom itsc.austin.ibm.com
#
chnfsdom
Current local domain: itsc.austin.ibm.com
#

5.8.4 Set up the NFS domain-to-realm map
The AIX 5.3 implementation of NFS V4 requires that you have a cross-relation
definition between the NFS domain and the Kerberos realm that is used. This is
done by generating a realm map file by using the smit or chnfsrtd commands.

Example 5-37 Client NFS domain-to-realm mapping

chnfsrtd -a REALM1.IBM.COM itsc.austin.ibm.com
#
#chnfsrtd
realm1.ibm.com itsc.austin.ibm.com
#

At this point, you should start the necessary NFS processes by running the
/etc/rc.nfs script. Before completing the client setup by enabling RPSSEC_GSS,
we have to set up the NAS environment by using a full or slim NFS V4 Kerberos
client, which we describe in the next two sections.
146 Securing NFS in AIX

5.8.5 Full client installation steps
After installing the NAS client file sets, we configure the Kerberos client using the
mkkrb5clnt command as shown in Example 5-38.

Example 5-38 mkkrb5clnt output

mkkrb5clnt -d itsc.austin.ibm.com -r REALM1.IBM.COM -c\
nfs407.itsc.austin.ibm.com -s nfs407.itsc.austin.ibm.com
#
Initializing configuration...
Creating /etc/krb5/krb5_cfg_type...
Creating /etc/krb5/krb5.conf...
The command completed successfully.
#

The same result can be achieved by using the config.krb5 command with
options -C -d itsc.austin.ibm.com -r REALM1.IBM.COM -c
nfs407.itsc.austin.ibm.com -s nfs407.itsc.austin.ibm.com

The NFS server (or an NFS V4 Full Kerberos client), using RPCSEC_GSS
security, must be able to acquire credentials for its service principal
nfs/<host_name>@REALM to authenticate requests. This type of principal must
be created using the kadmin command on either a server or the client during
installation. We create this principal on the client. For this operation, you should
know the Kerberos administrative principal (default is admin/admin@REALM)
and the password for the administrative principal.

In addition, this operation verifies that the client can communicate with the KDC
server.

Example 5-39 kinit to admin/admin

kinit admin/admin
Password for admin/admin@REALM1.IBM.COM:
#
klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: admin/admin@REALM1.IBM.COM

Valid starting Expires Service principal
08/11/04 19:16:11 08/12/04 19:15:33 krbtgt/REALM1.IBM.COM@REALM1.IBM.COM
#

The next step is to add the NFS service principal using the kadmin command.
Example 5-40 on page 148 shows that we used the kadmin: listprincs
commands to verify that no service principal of type
 Chapter 5. Sample implementation scenarios 147

nfs/nfs403.itsc.austin.ibm.com has been registered for the host
nfs403.itsc.austin.ibm.com. If this is the case, you can omit the principal creation
and continue with creation of the keytab file.

Example 5-40 kadmin to add the client service principal

/usr/krb5/sbin/kadmin
Authenticating as principal admin/admin@REALM1.IBM.COM with password.
Password for admin/admin@REALM1.IBM.COM:
kadmin: listprincs
joe@REALM1.IBM.COM
mary@REALM1.IBM.COM
bob@REALM1.IBM.COM
sally@REALM1.IBM.COM
host/nfs407.itsc.austin.ibm.com@REALM1.IBM.COM
root/nfs407.itsc.austin.ibm.com@REALM1.IBMIBM.COM
admin/admin@REALM1.IBM.COM
kadmin:
kadmin: add_principal -e des-cbc-crc:normal -randkey
nfs/nfs403.itsc.austin.ibm.com
WARNING: no policy specified for nfs/nfs403.itsc.austin.ibm.com@REALM1.IBM.COM;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Principal "nfs/nfs403.itsc.austin.ibm.com@REALM1.IBM.COM" created.
kadmin:

Now we create the keytab file so that the machine can request a valid ticket after
reboot. This enables the machine to mount NFS V4 directories with the security
flavor sec=krb5.

Example 5-41 Creating the client keytab file

kadmin: ktadd nfs/nfs403.itsc.austin.ibm.com
Entry for principal nfs/nfs403.itsc.austin.ibm.com with kvno 3, encryption type
Triple DES cbc mode with HMAC/sha1 added to keytab
WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs/nfs403.itsc.austin.ibm.com with kvno 3, encryption type
ArcFour with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs/nfs403.itsc.austin.ibm.com with kvno 3, encryption type
AES-256 CTS mode with 96-bit SHA-1 HMAC added to keytab
WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs/nfs403.itsc.austin.ibm.com with kvno 3, encryption type
DES cbc mode with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
kadmin:

This step created the local keytab file krb5.keytab in the /etc/krb5 directory. If this
keytab file is generated on another machine, such as a Windows KDC server,
148 Securing NFS in AIX

you can transfer it using binary ftp to the correct location on the client and import
the file using the ktutil command.

We verify the created keytab file using the kinit command (Example 5-42).

Example 5-42 kinit using the client keytab file

kinit -kt /etc/krb5/krb5.keytab nfs/nfs403.itsc.austin.ibm.com
#
klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: nfs/nfs403.itsc.austin.ibm.com@REALM1.IBM.COM

Valid starting Expires Service principal
08/11/04 19:47:27 08/12/04 19:47:27 krbtgt/REALM1.IBM.COM@REALM1.IBM.COM
#

To enable NFS V4 to use RPSEC-GSS, we create a map between the client
keytab file and the NFS service principal. This is done using the nfshostkey
command (Example 5-43).

Example 5-43 hostkey map creation on the client

nfshostkey -p nfs/nfs403.itsc.austin.ibm.com -f /etc/krb5/krb5.keytab
#
nfshostkey -l
nfs/nfs403.itsc.austin.ibm.com
/etc/krb5/krb5.keytab
#

We again verify that the nfshostkey map file can be used to get a valid Kerberos
ticket.

Example 5-44 Verification of the client nfs hostkey

kdestroy
#
kinit -kt `tail -n 1 /etc/nfs/hostkey` `head -n 1 /etc/nfs/hostkey`
#
klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: nfs/nfs403.itsc.austin.ibm.com@REALM1.IBM.COM

Valid starting Expires Service principal
08/11/04 19:50:52 08/12/04 19:50:16 krbtgt/REALM1.IBM.COM@REALM1.IBM.COM
#

The successful verification completes the full client installation.
 Chapter 5. Sample implementation scenarios 149

5.8.6 Slim client installation steps
As described in “NFS V4 slim client versus full client” on page 108, a slim client
does not have a service principal registered within the KDC server. In addition,
you cannot create a keytab file, so no Kerberos ticket can be issued automatically
on reboot.

The following are reasons why you would want to deploy slim clients in your
infrastructure:

� Pre-installed new systems
� Mass rollout of new systems
� Unprompted upgrade of clients

In addition, there are several choices for how to install the slim clients, based on
the way your systems are installed:

� Complete new installation (scratch installation)
� Cloning by use of a full system backup image

In the following section, we show how a slim client can be installed:

� To be used as a master image for cloning purposes
� Using the NAS and NFS V4 configuration files from the master machine

The provided examples show the configuration of a slim client. They can be used
if the requirement is met and all targeted systems are to be in the same NFS
domain and Kerberos realm. Otherwise, the slim client will not function properly
and you will have to manually change the Kerberos configuration, the NFS
domain configuration, or both.

Configure a slim client for cloning
We decided to use the following method for cloning:

1. Install one client with all required file sets to use NAS as described in “Full
client installation steps” on page 147.

Restriction: While writing this book, we learned that a slim client is not
capable of automatically mounting file systems that require RPCSEC_GSS
authorization only. In this case, the security flavor on the server must be at
least sec=sys:krb5(x).

Another recommended approach is to utilize the NFS V4 pseudo-FS model
and use a single client mount of the server’s exported pseudo-root. The
pseudo-root typically allows non-RPCSEC-GSS access.
150 Securing NFS in AIX

2. Configure the Kerberos client using the mkkrb5clnt command, but do not
create a service principal or a keytab file.

3. Set up the NFS domain and enable RPCSEC_GSS.

4. Create all required /etc/filesystem entries.

5. Create a full system backup image to be used by NIM.

Example 5-45 Slim client configuration for cloning

lslpp -L krb5*
 Fileset Level State Type Description (Uninstaller)
 --
 krb5.client.rte 1.4.0.0 C F Network Authentication
Service
 Client
 krb5.client.samples 1.4.0.0 C F Network Authentication
Service
 Samples
#
mkkrb5clnt -d itsc.austin.ibm.com -r REALM1.IBM.COM -c\
nfs407.itsc.austin.ibm.com
Initializing configuration...
Creating /etc/krb5/krb5_cfg_type...
Creating /etc/krb5/krb5.conf...
The command completed successfully.
#
chnfsdom
Current local domain: N/A
#
chnfsdom nfs.ibm.com
chnfsdom
Current local domain: nfs.ibm.com
#
chnfs -S -B
0513-059 The gssd Subsystem has been started. Subsystem PID is 14812.
#
/etc/rc.nfs
Starting NFS services:
0513-059 The biod Subsystem has been started. Subsystem PID is 22284.
0513-059 The nfsrgyd Subsystem has been started. Subsystem PID is 21812.
0513-059 The rpc.statd Subsystem has been started. Subsystem PID is 21118.
0513-059 The rpc.lockd Subsystem has been started. Subsystem PID is 14522.
0513-029 The gssd Subsystem is already active.
Multiple instances are not supported.
Completed NFS services.
#
klist
Unable to get cache name (ticket cache: /var/krb5/security/creds/krb5cc_0).
 Status 0x96c73ac3 - No credentials cache found.
 Chapter 5. Sample implementation scenarios 151

#
ls /etc/krb5
krb5.conf krb5_cfg_type
#
ls /etc/nfs
local_domain
#

Configure a slim client on a preinstalled AIX 5.3 system
To be able to configure an already installed AIX 5.3 system as slim client, we
used the following method:

1. Create a tar image of the basic NAS and NFS configuration files on the
master system as described above (Example 5-46).

This is the minimal list of files that are needed on a slim client. If your
environment requires the need to have, for example, Enterprise Identity
Mapping, there will be more files in the /etc/nfs directory.

Example 5-46 Creating a tar image of the basic NAS and NFS configuration files

ls /etc/nfs/* > /tmp/SlimClientInList
#
ls /etc/krb5/* >> /tmp/SlimClientInList
#
tar -cvf /tmp/SlimClientImage.tar -L /tmp/SlimClientInList
a /etc/nfs/local_domain 1 blocks.
a /etc/nfs/realm.map 1 blocks.
a /etc/krb5/krb5.conf 2 blocks.
a /etc/krb5/krb5_cfg_type 1 blocks.
#

2. Copy the tar image onto the target system.

3. Install the contents of the tar image on the system (Example 5-47).

Example 5-47 Installing the contents of the tar image onto the target system

tar -xvf /tmp/SlimClientImage.tar
x /etc/nfs/local_domain, 12 bytes, 1 media blocks.
x /etc/nfs/realm.map, 68 bytes, 1 media blocks.
x /etc/krb5/krb5.conf, 864 bytes, 2 media blocks.
x /etc/krb5/krb5_cfg_type, 7 bytes, 1 media blocks.
#
kinit sally
Password for sally@REALM1.IBM.COM:
#
klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
152 Securing NFS in AIX

Default principal: sally@REALM1.IBM.COM

Valid starting Expires Service principal
08/13/04 15:24:45 08/14/04 15:24:43 krbtgt/REALM1.IBM.COM@REALM1.IBM.COM
#

Verification of the slim client
On the server, validate the NFS pseudo-root. Include, at the very least, the
security flavor sec=sys to enable mount during startup on the slim client. The
following file systems have been exported on the server:

� /exports -vers=4,sec=sys:krb5,rw
� /exports/home -vers=4,sec=sys:krb5,rw
� /exports/project/projA -vers=4,sec=sys:krb5,ro
� /exports/project/projB -vers=4,sec=sys:krb5,ro

The slim client will not be able to mount a file system using security flavor
sec=krb5 without having valid Kerberos tickets. To achieve automatic mount of
the pseudo-root FS during startup, the security flavor sec=sys on the server and
the client for the NFS pseudo-root FS has to be used.

We used smitty mknfsmnt to create NFS pseudo-root FS mount on the client as
shown in Example 5-48.

Example 5-48 Slim client /etc/filesystems NFS mount

tail /etc/filesystems
/nfs:
 dev = "/"
 vfs = nfs
 nodename = nfs404
 mount = true
 options = bg,hard,intr,vers=4,sec=sys:krb5
 account = false

The slim client is now rebooted and with UID root, we access the NFS remote
mounted directory.

Example 5-49 Slim client access after reboot

uptime
 12:22PM up 8 mins, 1 user, load average: 0.02, 0.26, 0.19
#
#klist
Unable to get cache name (ticket cache: /var/krb5/security/creds/krb5cc_0).
 Status 0x96c73ac3 - No credentials cache found.
#

 Chapter 5. Sample implementation scenarios 153

id
uid=0(root) gid=0(system)
groups=2(bin),3(sys),7(security),8(cron),10(audit),11(lp)
#
#mount
 node mounted mounted over vfs date options
-------- --------------- --------------- ------ ------------ ---------------
 /dev/hd4 / jfs Aug 12 12:13 rw,log=/dev/hd8
 /dev/hd2 /usr jfs Aug 12 12:13 rw,log=/dev/hd8
 /dev/hd9var /var jfs Aug 12 12:13 rw,log=/dev/hd8
 /dev/hd3 /tmp jfs Aug 12 12:13 rw,log=/dev/hd8
 /dev/hd1 /home jfs Aug 12 12:14 rw,log=/dev/hd8
 /proc /proc procfs Aug 12 12:14 rw
 /dev/hd10opt /opt jfs Aug 12 12:14 rw,log=/dev/hd8
 /dev/log_lv /var/nfs4log jfs Aug 12 12:14 rw,log=/dev/hd8
nfs404 / /nfs nfs4 Aug 12 12:14
rw,bg,hard,intr,vers=4,sec=sys:krb5
#
cd /nfs
#
ls
dept home local project tmp
#

This system is now ready to be used as the master full system backup for
prompted installation of the clients.

5.8.7 Configuring RPCSEC_GSS on the clients
If you want to use Kerberos authentication on the client, you must enable NFS V4
enhanced security on the client. You can enable enhanced security using smit
Configure NFS on This System → Enable RPCSEC_GSS or by using the
chnfs -S -B command:

chnfs -S -B
0513-059 The gssd Subsystem has been started. Subsystem PID is 22158.
#

At this point, the client setup is finished and can mount and access directories
with enhanced security.

Example 5-50 Verify the client using mount command

mount -o vers=4,sec=krb5 nfs404:/ /nfs
#
nfs4cl showfs /nfs
154 Securing NFS in AIX

Server Remote Path fsid Local Path
-------- --------------- --------------- ---------------
nfs404 / 10:4 /nfs
 Current Server: nfs404:/nfs

options :
rw,intr,rsize=32768,wsize=32768,timeo=300,retrans=5,biods=0,numclust=2,maxgroup
s=0,acregmin=3,acregmax=60,acdirmin=30,acdirmax=60,sec=krb5
#

The client is now ready for deploying NFS V4.

5.9 Preparing the system for Tivoli Directory Server and
Kerberos V5

In this section, we lead you through the mandatory preparation steps on your AIX
5.3 system before you can deploy Kerberos V5 with the IBM Tivoli Directory
Server LDAP backend.

The following definitions are used in the example:

NFS server hostname = nfs404, OS = AIX 5.3
NFS client hostname = nfs405, OS: AIX 5.3
KDC and LDAP server hostname = nfs407, OS: AIX 5.3
NFS Domain Name itsc.austin.ibm.com
Realm Name REALM1.IBM.COM

Figure 5-2 on page 156 gives a better view of the setup.

Attention: As we write this book, there is a requirement for the system to be
running in 64-bit kernel mode. This is required for the db2_08_01.ldap file set,
which gives you the LDAP DB2® backend. This may change in future releases
of the file set.
 Chapter 5. Sample implementation scenarios 155

Figure 5-2 Sample AIX environment with an AIX KDC and LDAP backend

5.9.1 Set up procedure
The following procedure needs to be carried to ensure that your system is
running a 64-bit kernel.

1. Check to see if your system is capable of running in 64-bit mode:

bootinfo -y
64
#

If the result is 32, then your system is a 32-bit machine and you will not be able to
proceed any further. If the result is as shown in the previous example, then
continue with the rest of the steps.

2. We confirm what mode the system is running in:

bootinfo -K
32
#

156 Securing NFS in AIX

As can be seen from the output, the system is currently running in 32-bit
mode. Before we can progress with the install, we have to configure it to run in
64-bit mode.

3. To change the system to run in 64-bit mode:

cd /
#
ln -sf /usr/lib/boot/unix_64 /unix

ls -al /unix
lrwxrwxrwx 1 root system 21 Aug 04 15:30 /unix -> /usr/lib/boot/unix_64

bosboot -ad /dev/ipldevice

bosboot: Boot image is 22469 512 byte blocks.
#

4. We now make sure that aio is enabled at system start.

lsattr -El aio0
autoconfig defined STATE to be configured at system restart True
fastpath enable State of fast path True
kprocprio 39 Server PRIORITY True
maxreqs 4096 Maximum number of REQUESTS True
maxservers 10 MAXIMUM number of servers per cpu True
minservers 1 MINIMUM number of servers True

As the example shows, autoconfig is in a defined state for aio, and we need
to change this to an available state. Use the following command and change
STATE to be configured at system restart to available:

smitty chgaio

5. We now reboot the system to allow for the 64-bit kernel.

6. After the system has rebooted, verify that it is running in 64-bit mode:

bootinfo -K
64
#

7. We also confirm that aio is now in available state:

lsattr -El aio0
autoconfig available STATE to be configured at system restart True
fastpath enable State of fast path True
kprocprio 39 Server PRIORITY True
maxreqs 4096 Maximum number of REQUESTS True
maxservers 10 MAXIMUM number of servers per cpu True
minservers 1 MINIMUM number of servers True
#

 Chapter 5. Sample implementation scenarios 157

8. Next, we need to create a 350 MB file system so that we can install the DB2
binaries. (We want to keep the root file system as small as possible.) The new
file system should be created to mount on to /usr/opt/db2_08_01. You will
need to change the owner and group to bin respectively.

9. We also need to create a 200 MB file system to mount to /home/ldapdb2.

10.Create a group called dbsysadm and add the root user to this group.

11.Create a user called ldapdb2. This user must have these characteristics:

a. Primary group: dbsysadm

b. Password REGISTRY: files

c. HOME directory: /home/ldapdb2

d. Change the owner and group of /home/ldapdb2 to ldapdb2:dbsysadm

12.Add the following entries to /etc/services:

DB2_ldapdb2 60000/tcp
DB2_ldapdb2_1 60001/tcp
DB2_ldapdb2_2 60002/tcp
DB2_ldapdb2_END 60003/tcp

13.The following file sets must be installed for IBM Directory Server. They can be
found on the AIX Base Installation media:

– ldap.client.adt
– ldap.client.rte
– ldap.html.en_US.config
– ldap.html.en_US.man
– ldap.msg.en_US
– ldap.server.cfg
– ldap.server.com
– ldap.server.java
– ldap.server.rte
– ldap.webdadmin
– ldap.client.rte
– ldap.server.cfg
– ldap.server.com
– db2_08_01.ldap

To install the file sets, this command was used:

installp -aXYgd /dev/cd0 ldap.server.rte

Important: Make sure that user ldapdb2 has a password assigned and can
log on without any challenges before proceeding.
158 Securing NFS in AIX

At the end of the install, the screen in Example 5-51 should confirm a
successful install.

Example 5-51 Successful install of ldap.rte.server

+---+
 Summaries:
+---+

Installation Summary

Name Level Part Event Result

ldap.client.rte 5.2.0.0 USR APPLY SUCCESS
ldap.client.adt 5.2.0.0 USR APPLY SUCCESS
ldap.client.rte 5.2.0.0 ROOT APPLY SUCCESS
ldap.server.java 5.2.0.0 USR APPLY SUCCESS
db2_08_01.client 8.1.1.16 USR APPLY SUCCESS
db2_08_01.cnvucs 8.1.1.16 USR APPLY SUCCESS
db2_08_01.conv 8.1.1.16 USR APPLY SUCCESS
db2_08_01.db2.rte 8.1.1.16 USR APPLY SUCCESS
db2_08_01.db2.samples 8.1.1.16 USR APPLY SUCCESS
db2_08_01.essg 8.1.1.16 USR APPLY SUCCESS
db2_08_01.icuc 8.1.1.16 USR APPLY SUCCESS
db2_08_01.icut 8.1.1.16 USR APPLY SUCCESS
db2_08_01.jdbc 8.1.1.16 USR APPLY SUCCESS
db2_08_01.jhlp.en_US.iso885 8.1.1.16 USR APPLY SUCCESS
db2_08_01.cj 8.1.1.16 USR APPLY SUCCESS
db2_08_01.ldap 8.1.1.16 USR APPLY SUCCESS
db2_08_01.msg.en_US.iso8859 8.1.1.16 USR APPLY SUCCESS
db2_08_01.pext 8.1.1.16 USR APPLY SUCCESS
db2_08_01.repl 8.1.1.16 USR APPLY SUCCESS
db2_08_01.sqlproc 8.1.1.16 USR APPLY SUCCESS
ldap.server.rte 5.2.0.0 USR APPLY SUCCESS
ldap.server.com 5.2.0.0 USR APPLY SUCCESS
ldap.server.cfg 5.2.0.0 USR APPLY SUCCESS
ldap.server.com 5.2.0.0 ROOT APPLY SUCCESS
ldap.server.cfg 5.2.0.0 ROOT APPLY SUCCESS
db2_08_01.conn 8.1.1.16 USR APPLY SUCCESS
db2_08_01.cs.rte 8.1.1.16 USR APPLY SUCCESS
db2_08_01.das 8.1.1.16 USR APPLY SUCCESS
db2_08_01.db2.engn 8.1.1.16 USR APPLY SUCCESS
#

14.Install the Kerberos V5 file sets as described in 5.6.2, “Installing the IBM NAS
file sets” on page 135.
 Chapter 5. Sample implementation scenarios 159

We have now successfully installed all of the software that is required to support
KDC and RFC2307 with IBM Directory Server.

5.9.2 Configure IBM Tivoli Directory Server
After installing the required programs, we now proceed with the initial
configuration:

1. Ensure that ibmslapd is not running; otherwise the command in the next step
would fail with the following message:

08/13/04 15:55:15 Non-SSL port initialized to 389.
08/13/04 15:55:16 Attempt to bind failed; errno 67 (Address already in
use).
08/13/04 15:55:16 SocketInit failed for port 389.

2. We start with configuring the directory.

Example 5-52 Configuration of the Directory Server

mksecldap -s -a cn=admin -p succ3ss -S rfc2307aix -u ALL
Filesystem size changed to 212992
ldapdb2's New password:
Enter the new password again:

 You have chosen the following actions:

 Administrator DN 'cn=admin' and password will be set.

 Setting administrator DN 'cn=admin' and password.
 Set administrator DN 'cn=admin' and password.

IBM Tivoli Directory Server Configuration complete.

 You have chosen the following actions:

 Database 'ldapdb2' will be configured in instance 'ldapdb2'.

 Configuring IBM Tivoli Directory Server Database.
 Creating instance: 'ldapdb2'.
Created instance: 'ldapdb2'.
 Cataloging instance node: 'ldapdb2'.
 Cataloged instance node: 'ldapdb2'.

Note: If you need SSL capabilities, install the AIX Certificate and SSL base file
sets (gskta for 64-bit kernel, gsksa for 32-bit kernel) and the crypto file sets
from the AIX 5.3 Expansion Pack. Both gskta and gsksa are required. gsksa is
used by the LDAP client apps such as ldapsearch.
160 Securing NFS in AIX

 Starting database manager for instance: 'ldapdb2'.
Started database manager for instance: 'ldapdb2'.
 Creating database: 'ldapdb2'.
Created database: 'ldapdb2'.
 Updating the database: 'ldapdb2'
 Updated the database: 'ldapdb2'
 Updating the database manager: 'ldapdb2'
 Updated the database manager: 'ldapdb2'
 Enabling multi-page file allocation: 'ldapdb2'
Enabled multi-page file allocation: 'ldapdb2'
 Configuring database: 'ldapdb2'
 Configured database: 'ldapdb2'
 Adding local loop back to database: 'ldapdb2'.
Added local loop back to database: 'ldapdb2'.
 Stopping database manager for instance: 'ldapdb2'.
 Stopped database manager for instance: 'ldapdb2'.
 Starting database manager for instance: 'ldapdb2'.
 Started database manager for instance: 'ldapdb2'.
 Configured IBM Tivoli Directory Server Database.

IBM Tivoli Directory Server Configuration complete.
Server starting.
Plugin of type EXTENDEDOP is successfully loaded from libevent.a.
Plugin of type EXTENDEDOP is successfully loaded from libtranext.a.
Plugin of type EXTENDEDOP is successfully loaded from libldaprepl.a.
Plugin of type PREOPERATION is successfully loaded from libDSP.a.
Plugin of type PREOPERATION is successfully loaded from libDigest.a.
Plugin of type EXTENDEDOP is successfully loaded from libevent.a.
Plugin of type EXTENDEDOP is successfully loaded from libtranext.a.
Plugin of type AUDIT is successfully loaded from /lib/libldapaudit.a.
Plugin of type AUDIT is successfully loaded from
/usr/ccs/lib/libsecldapaudit64.a(shr.o).
Plugin of type EXTENDEDOP is successfully loaded from libevent.a.
Plugin of type EXTENDEDOP is successfully loaded from libtranext.a.
Plugin of type DATABASE is successfully loaded from /lib/libback-rdbm.a.
Plugin of type REPLICATION is successfully loaded from /lib/libldaprepl.a.
Plugin of type EXTENDEDOP is successfully loaded from /lib/libback-rdbm.a.
Plugin of type EXTENDEDOP is successfully loaded from libevent.a.
Plugin of type DATABASE is successfully loaded from /lib/libback-config.a.
Plugin of type EXTENDEDOP is successfully loaded from libloga.a.
Non-SSL port initialized to 389.
Migrating users and groups to LDAP server.
#

3. Although the DB2 database is now configured and running, we need to set
the database to autostart after reboot of the system.
 Chapter 5. Sample implementation scenarios 161

Example 5-53 Change autostart setting for DB2 instance ldapdb2

su - ldapdb2
$
$ db2iauto -on ldapdb2
$
$ db2set
DB2COMM=TCPIP
DB2AUTOSTART=YES
$

4. We now tune the DB2 database.

Example 5-54 Tuning of the DB2 database

su - ldapdb2
$
$ db2 update db cfg for ldapdb2 using DBHEAP 20000
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
$
$ db2 update db cfg for ldapdb2 using SORTHEAP 5000
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
$
$ db2 update db cfg for ldapdb2 using APPLHEAPSZ 10000
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
$
$ exit

5. We now stop the IBM Tivoli Directory Server to facilitate the addition of the
container object for Kerberos:

ibmdirctl -D cn=admin -w succ3ss stop
Stop operation succeeded

6. To be able to provide an LDAP backend to the KDC, run this command:

ldapcfg -q -s "o=IBM,c=US"

We do this so that we do not have to use a legacy or file-based backend. For
a detailed description of why this is done, refer to the NAS Admin Guide IBM
Network Authentication Service Version 1.4 for AIX, Linux, and Solaris
Administrator’s and User’s Guide delivered with the krb5.doc.en_US file set.

7. We now start the IBM Directory Server to enable us to add the Kerberos
schema:

ibmdirctl -D cn=admin -w succ3ss start
Start operation succeeded

162 Securing NFS in AIX

8. We add the schema:

ldapmodify -h localhost -D cn=admin -w succ3ss -f\
/usr/krb5/ldif/IBM.KRB.schema.ldif -v -c
#

9. We now create a schema for the KDC realm. Create
/usr/ldap/etc/realm_add_ibm.ldif. (The NAS Admin Guide is used as
reference for creating the schema file.) Add the following lines to the new file.

Example 5-55 Sample LDIF file for the KDC realm

The suffix "ou=, o=, c=" should be defined before attempting to
load this data. Or change the suffix to be an already defined object.
Change all references of YOURHOSTNAME.DOMAINNAME to be your realm name
#
version: 1

dn: o=IBM, c=US
objectclass: top
objectclass: organization
o: IBM

dn: krbrealmName-V2=REALM1.IBM.COM, o=IBM, c=US
objectclass: KrbRealm-V2
objectclass: KrbRealmExt
krbrealmName-V2: REALM1.IBM.COM
krbprincSubtree: krbrealmName-V2=REALM1.IBM.COM, o=IBM, c=US
krbDeleteType: 3

dn: cn=principal, krbrealmName-V2=REALM1.IBM.COM, o=IBM, c=US
objectclass: container
cn: principal

dn: cn=policy, krbrealmName-V2=REALM1.IBM.COM, o=IBM, c=US
objectclass: container
cn: policy

The sample file contents are shown in “LDIF sample file for KDC” on
page 270.

10.We now modify the dn: o=IBM, c=US container by adding the schema.

Example 5-56 Adding the modified realm schema into LDAP

ldapmodify -a -h localhost -D cn=admin -w succ3ss -f\
/usr/ldap/etc/realm_add_ibm.ldif -v -c
ldap_init(localhost, 389)
add objectclass:
 Chapter 5. Sample implementation scenarios 163

 BINARY (3 bytes) top
 BINARY (12 bytes) organization
add o:
 BINARY (4 bytes) IBM
adding new entry o=IBM, c=US

add objectclass:
 BINARY (11 bytes) KrbRealm-V2
 BINARY (11 bytes) KrbRealmExt
add krbrealmName-V2:
 BINARY (15 bytes) REALM1.IBM.COM
add krbprincSubtree:
 BINARY (45 bytes) krbrealmName-V2=REALM1.IBM.COM, o=IBM, c=US
add krbDeleteType:
 BINARY (1 bytes) 3
adding new entry krbrealmName-V2=REALM1.IBM.COM, o=IBM, c=US

add objectclass:
 BINARY (9 bytes) container
add cn:
 BINARY (9 bytes) principal
adding new entry cn=principal, krbrealmName-V2=REALM1.IBM.COM, o=IBM, c=US

add objectclass:
 BINARY (9 bytes) container
add cn:
 BINARY (6 bytes) policy
adding new entry cn=policy, krbrealmName-V2=REALM1.IBM.COM, o=IBM, c=U
#

11.At this point we can verify the IBM Directory using a simple ldap query that
shows all available container names in the newly created LDAP directory.

Example 5-57 Verify the LDAP naming contexts

ldapsearch -b "" -s base "objectclass=*" namingcontexts

namingcontexts=CN=SCHEMA
namingcontexts=CN=LOCALHOST
namingcontexts=CN=AIXDATA
namingcontexts=CN=PWDPOLICY
namingcontexts=CN=IBMPOLICIES
namingcontexts=O=IBM,C=US

164 Securing NFS in AIX

5.9.3 Configure the KDC server with LDAP backend
1. Make sure that the NAS V1.4 server file sets are installed on the system. The

next step is to configure the KDC server.

Example 5-58 Creating the KDC server using mkkrb5srv

mkkrb5srv -r REALM1.IBM.COM -s nfs407.itsc.austin.ibm.com \
-d itsc.austin.ibm.com -a admin/admin -l nfs407.itsc.austin.ibm.com \
-u “cn=admin” -p succ3ss

Fileset Level State Description
 --
Path: /usr/lib/objrepos
 krb5.server.rte 1.4.0.0 COMMITTED Network Authentication Service
 Server

Path: /etc/objrepos
 krb5.server.rte 1.4.0.0 COMMITTED Network Authentication Service
 Server
The -s option is not supported.
The administration server will be the local host.
Initializing configuration...
Creating /etc/krb5/krb5_cfg_type...
Creating /etc/krb5/krb5.conf...
Creating /var/krb5/krb5kdc/kdc.conf...
Creating database files...
Initializing database 'LDAP' for realm 'REALM1.IBM.COM'
master key name 'K/M@REALM1.IBM.COM'
Attempting to bind to one or more LDAP servers. This may take a while...
You are prompted for the database Master Password.
Enter database Master Password:
Re-enter database Master Password to verify:
Attempting to bind to one or more LDAP servers. This may take a while...
WARNING: no policy specified for admin/admin@REALM1.IBM.COM;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Enter password for principal "admin/admin@REALM1.IBM.COM":
Re-enter password for principal "admin/admin@REALM1.IBM.COM":
Principal "admin/admin@REALM1.IBM.COM" created.
Creating keytable...
Attempting to bind to one or more LDAP servers. This may take a while...
Creating /var/krb5/krb5kdc/kadm5.acl...
Starting krb5kdc...
Attempting to bind to one or more LDAP servers. This may take a while...
krb5kdc was started successfully.
Starting kadmind...
Attempting to bind to one or more LDAP servers. This may take a while...
kadmind was started successfully.
 Chapter 5. Sample implementation scenarios 165

The command completed successfully.
Restarting kadmind and krb5kdc
Attempting to bind to one or more LDAP servers. This may take a while...
Attempting to bind to one or more LDAP servers. This may take a while...
#

2. Check that the KDC server process krb5kdc and kadmind has been started.

Example 5-59 Verify the KDC server processes

ps -ef |grep krb5 |grep -v grep
 root 290896 1 0 13:57:30 - 0:00 /usr/krb5/sbin/krb5kdc
 root 512076 1 0 13:57:30 - 0:00 /usr/krb5/sbin/kadmind
#

3. Now we log on to the KDC to check that a ticket can be issued.

Example 5-60 Verification of the KDC administrator

kinit admin/admin
Password for admin/admin@REALM1.IBM.COM:
#
klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: admin/admin@REALM1.IBM.COM

Valid starting Expires Service principal
08/05/04 14:07:07 08/06/04 14:07:03 krbtgt/REALM1.IBM.COM@REALM1.IBM.COM
#

4. To be able to add, modify, and delete users and groups using the
mkgroup/mkuser -R KRB5LDAP commands, we have to add the following
authentication grammar to the /usr/lib/security/methods.cfg file and append
the following lines.

Example 5-61 Authentication grammar in file /usr/lib/security/methods.cfg

LDAP:
 program = /usr/lib/security/LDAP
 program_64 =/usr/lib/security/LDAP64
KRB5:
 program = /usr/lib/security/KRB5

KRB5LDAP:
options = db=LDAP,auth=KRB5

5. In addition, the local LDAP security client daemon must be running on the
system. This can be accomplished with the following command.
166 Securing NFS in AIX

Example 5-62 Enable the local security client daemon

mksecldap -c -h nfs407.itsc.austin.ibm.com -a cn=admin -p succ3ss
#

6. To verify the LDAP security client daemon, you can use the ls-secldapclntd
command.

Example 5-63 Output of command ls-secldapclntd

/usr/sbin/ls-secldapclntd
ldapservers=nfs407.itsc.austin.ibm.com
ldapport=389
ldapversion=3
userbasedn=ou=aixuser,cn=aixsecdb,cn=aixdata
groupbasedn=ou=aixgroup,cn=aixsecdb,cn=aixdata
idbasedn=cn=aixid,ou=system,cn=aixsecdb,cn=aixdata
usercachesize=1000
usercacheused=0
groupcachesize=100
groupcacheused=0
cachetimeout=300
heartbeatT=300
numberofthread=10
alwaysmaster=no
authtype=UNIX_AUTH
searchmode=ALL
defaultentrylocation=LDAP
ldaptimeout=60
userobjectclass=account,posixaccount,shadowaccount,aixauxaccount
groupobjectclass=posixgroup,aixauxgroup
#

At this point, the KDC and IBM Directory Server initial setup is complete.

In order to create users in the Kerberos realms and store the user/group
identification information in the RFC2307, we run the following commands:

1. We added the root user to the realm to enable the AIX mkuser command to
access the LDAP backend database.

Example 5-64 Creation of the root principal

kinit admin/admin
Password for admin/admin@REALM1.IBM.COM:
#
klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: admin/admin@REALM1.IBM.COM
 Chapter 5. Sample implementation scenarios 167

Valid starting Expires Service principal
08/05/04 16:45:38 08/06/04 16:45:36 krbtgt/REALM1.IBM.COM@REALM1.IBM.COM
#
/usr/krb5/sbin/kadmin.local
Attempting to bind to one or more LDAP servers. This may take a while...
kadmin.local:
kadmin.local: add_principal root/nfs407.itsc.austin.ibm.com
WARNING: no policy specified for
root/nfs407.itsc.austin.ibm.com@REALM1.IBM.COM;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Enter password for principal "root/nfs407.itsc.austin.ibm.com@REALM1.IBM.COM":
Re-enter password for principal
"root/nfs407.itsc.austin.ibm.com@REALM1.IBM.COM":
Principal "root/nfs407.itsc.austin.ibm.com@REALM1.IBM.COM" created.
kadmin.local: exit
#
kdestroy
#

2. The next step is to verify the newly created principal. In addition, we need to
have valid tickets to perform all further user creation steps (shown in
Example 5-65).

Example 5-65 Verify the newly created principle

kinit root/nfs407.itsc.austin.ibm.com
Password for root/nfs407.itsc.austin.ibm.com@REALM1.IBM.COM:
#
/usr/krb5/bin/klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: root/nfs407.itsc.austin.ibm.com@REALM1.IBM.COM:

Valid starting Expires Service principal
08/06/04 10:39:24 08/07/04 10:39:23 krbtgt/REALM1.IBM.COM@REALM1.IBM.COM
08/06/04 10:39:45 08/06/04 13:39:45
root/nfs407.itsc.austin.ibm.com@REALM1.IBM.COM
#

3. Now we can create the users and groups as in Example 5-66.

Example 5-66 Creation of user and group in the KDC with LDAP backend

mkgroup -R KRB5LDAP -a id=1400 eng
#
mkuser -R KRB5LDAP id='6023' pgrp='staff' groups='eng' \ home='/home/sally'
shell='/bin/ksh' gecos='NFS V4 KDC Test user sally' sally
#
passwd -R KRB5LDAP sally
168 Securing NFS in AIX

sally's Old password:
sally's New password:
Enter the new password again:
#

4. Verify that the user sally is created correctly by executing the lsuser sally
command.

Example 5-67 Output of command lsuser for user sally

lsuser -R KRB5LDAP sally
sally id=6023 pgrp=staff groups=staff,eng home=/home/sally shell=/bin/ksh
gecos=NFSv4 KDC Test user sally login=true su=true rlogin=true telnet=true
daemon=true admin=false sugroups=ALL admgroups= tpath=nosak ttys=ALL expires=0
auth1=SYSTEM auth2=NONE umask=22 registry=KRB5LDAP SYSTEM=KRB5LDAP OR compat
logintimes= loginretries=0 pwdwarntime=0 account_locked=false minage=0 maxage=0
maxexpired=-1 minalpha=0 minother=0 mindiff=0 maxrepeats=8 minlen=0
histexpire=0 histsize=0 pwdchecks= dictionlist= fsize=2097151 cpu=-1
data=262144 stack=65536 core=2097151 rss=65536 nofiles=2000 time_last_login=0
time_last_unsuccessful_login=0 unsuccessful_login_count=0 roles=
krb5_principal=sally@REALM1.IBM.COM krb5_principal_name=sally@REALM1.IBM.COM
krb5_realm=REALM1.IBM.COM maxage=0 expires=0 krb5_last_pwd_change=1091805538
admchk=false krb5_attributes=requires_preauth
krb5_mod_name=root/nfs407.itsc.austin.ibm.com@REALM1.IBM.COM
krb5_mod_date=1091805538 krb5_kvno=2 krb5_mkvno=0
krb5_max_renewable_life=604800 time_last_login=0 time_last_unsuccessful_login=0
unsuccessful_login_count=0 krb5_names=sally:nfs407.itsc.austin.ibm.com
#

5. To verify that the user ID is valid, try to log on as sally and display the
Kerberos ticket details.

Example 5-68 Integrated logon with user sally

telnet nfs407
Trying...
Connected to nfs407.itsc.austin.ibm.com.
Escape character is '^]'.

telnet (nfs407)
AIX Version 5
(C) Copyrights by IBM and by others 1982, 2004.
login: sally
sally's Password:
$
$ /usr/krb5/bin/klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_sally@REALM1.IBM.COM_6023
Default principal: sally@REALM1.IBM.COM
 Chapter 5. Sample implementation scenarios 169

Valid starting Expires Service principal
08/06/04 10:39:24 08/07/04 10:39:23 krbtgt/REALM1.IBM.COM@REALM1.IBM.COM
08/06/04 10:39:45 08/06/04 13:39:45 kadmin/admin@REALM1.IBM.COM
$

The user sally can log on to any machine in the Kerberos realm
REALM1.IBM.COM without being defined as a local user (if the client has been
set up with the previously mentioned authentication grammar). The user’s
identification will be stored in LDAP RFC2307.

Also, because user sally has a Kerberos ticket granted automatically during the
AIX logon process, she can have access to all NFS V4 mounted file systems with
sec=krb5 option if provided ACLs are set for access.

All further steps to set up an NFS V4 server were described in previous sections.

5.9.4 Configure the NFS V4 client for integrated login services
We installed AIX 5.3 using the base install media. We now install the following
additional file sets from the AIX 5.3 Expansion Pack:

� krb5.client.rte
� modcrypt.base

Example 5-69 Output of NAS file set installation verification

#lslpp -l | grep -i krb5
 krb5.client.rte 1.4.0.0 COMMITTED Network Authentication Service
 krb5.client.samples 1.4.0.0 COMMITTED Network Authentication Service
#
#lslpp -l |grep modcrypt
 modcrypt.base.includes 5.3.0.0 COMMITTED Cryptographic Library Include
 modcrypt.base.lib 5.3.0.0 COMMITTED Cryptographic Library
 (libmodcrypt.a)
#

1. The plan is to use AIX integrated login within KDC and IBM Directory Server
as the LDAP backend, so we install the LDAP client software from the AIX
5.3. Base media.

Example 5-70 Output of LDAP client file set installation

installp -agXd . ldap.client
Installation Summary

Name Level Part Event Result

ldap.client.rte 5.2.0.0 USR APPLY SUCCESS
170 Securing NFS in AIX

ldap.client.adt 5.2.0.0 USR APPLY SUCCESS
ldap.client.rte 5.2.0.0 ROOT APPLY SUCCESS
X11.adt.lib 5.3.0.0 USR APPLY SUCCESS
#

2. Check that the system uses the correct PATH to locate the NAS binaries.

Example 5-71 Output of command type kinit

type kinit
kinit is /usr/krb5/bin/kinit
#

3. Now we can configure this system into our NAS infrastructure as a client
system using the mkkrb5clnt command, delivered by AIX BOS file set
bos.rte.security. (nfs407.itsc.austin.ibm.com is the KDC serving the Kerberos
realm REALM1.IBM.COM and also the IBM Tivoli Directory Server.)

Example 5-72 Output of Kerberos client configuration using mkkrb5clnt

mkkrb5clnt -c nfs407.itsc.austin.ibm.com -r REALM1.IBM.COM -s
nfs407.itsc.austin.ibm.com -d itsc.austin.ibm.com -l nfs407.itsc.austin.ibm.com
-i files -A -K -T
Initializing configuration...
Creating /etc/krb5/krb5_cfg_type...
Creating /etc/krb5/krb5.conf...
The command completed successfully.
Password for admin/admin@REALM1.IBM.COM:
Configuring fully integrated login
Authenticating as principal admin/admin with existing credentials.
WARNING: no policy specified for
host/nfs405.itsc.austin.ibm.com@REALM1.IBM.COM;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Principal "host/nfs405.itsc.austin.ibm.com@REALM1.IBM.COM" created.

Administration credentials NOT DESTROYED.
Making root a Kerberos administrator
Authenticating as principal admin/admin with existing credentials.
WARNING: no policy specified for
root/nfs405.itsc.austin.ibm.com@REALM1.IBM.COM;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Enter password for principal "root/nfs405.itsc.austin.ibm.com@REALM1.IBM.COM":
Re-enter password for principal
"root/nfs405.itsc.austin.ibm.com@REALM1.IBM.COM":
Principal "root/nfs405.itsc.austin.ibm.com@REALM1.IBM.COM" created.

Administration credentials NOT DESTROYED.
 Chapter 5. Sample implementation scenarios 171

Configuring Kerberos as the default authentication scheme
Cleaning administrator credentials and exiting.
#

4. We verify that the newly created principal can be used to authenticate with
Kerberos.

Example 5-73 Principal root verification

kinit root/nfs405.itsc.austin.ibm.com
Password for root/nfs405.itsc.austin.ibm.com@REALM1.IBM.COM:
root@nfs405 [ppc] klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: root/nfs405.itsc.austin.ibm.com@REALM1.IBM.COM

Valid starting Expires Service principal
08/10/04 09:54:00 08/11/04 09:53:50 krbtgt/REALM1.IBM.COM@REALM1.IBM.COM
#

If using the config.krb5 command, delivered with IBM NAS V1.4, the
configuration will be valid, but the principal nfs/<FQDN>@REALM will not be
created.

5. The next step is to add an NFS service (machine) principal and create a
keytab file for the NFS V4 client nfs402.itsc.austin.ibm.com. This is done by
carrying out the following process.

Example 5-74 Adding the NFS service principal

kadmin -p admin/admin
Authenticating as principal admin/admin with password.
Password for admin/admin@REALM1.IBM.COM:
kadmin:
kadmin: add_principal -randkey -e des-cbc-crc:normal \
nfs/nfs402.itsc.austin.ibm.com
WARNING: no policy specified for nfs/nfs402.itsc.austin.ibm.com@REALM1.IBM.COM;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Principal "nfs/nfs402.itsc.austin.ibm.com@REALM1.IBM.COM" created.
kadmin:
kadmin: ktadd nfs/nfs402.itsc.austin.ibm.com
Entry for principal nfs/nfs402.itsc.austin.ibm.com with kvno 3, encryption type
DES cbc mode with CRC-32 added to keytab
 WRFILE:/etc/krb5/krb5.keytab.

Note: This principal cannot be used for NFS V4 authentication. You still
must create the service principal of type nfs/<FQDN>@REALM.
172 Securing NFS in AIX

kadmin:
kadmin: quit
#

6. Verify that the machine principal can log on using the keytab file that we just
generated.

Example 5-75 Verification of the NFS service principal

kinit -t /etc/krb5/krb5.keytab nfs/nfs402.itsc.austin.ibm.com
klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: nfs/nfs402.itsc.austin.ibm.com@REALM1.IBM.COM
Valid starting Expires Service principal
07/30/04 11:08:14 07/31/04 11:08:14 krbtgt/REALM1.IBM.COM@REALM1.IBM.COM
#

7. To create the hostkey map file, change the NFS domain and enable
RPCSEC_GSS by executing the commands shown in Example 5-76.

Example 5-76 Enable NFS V4 on the system nfs402

mkdir -p /etc/nfs
#
nfshostkey -p nfs/nfs402.itsc.austin.ibm.com -f /etc/krb5/krb5.keytab
#
chnfsdom itsc.austin.ibm.com
#
/usr/sbin/chnfsrtd -a 'REALM1.IBM.COM' 'nfs.ibm.com'
#
chnfs -S -B
#
/etc/rc.nfs
#

8. The next step is to change the authentication grammar on
nfs402.itsc.austin.ibm.com so that all users, except the root user, use
integrated logon. We decided to change the Password Registry for the root
user to files and the authentication grammar to compat:

chuser registry=files root
#
chuser SYSTEM="compat" root
#

9. We also make the following changes to the default stanza in the
/etc/security/user file:

SYSTEM = "compat"
 Chapter 5. Sample implementation scenarios 173

Change the line to:

SYSTEM = "KRB5LDAP OR compat"

We also need to add the following line to the default stanza in
/etc/security/user:

registry = KRB5LDAP

Both changes can be achieved by running the following command.

Example 5-77 Change default logon using chsec command

#chsec -f /etc/security/user -s default -a registry=KRB5LDAP
#
#chsec -f /etc/security/user -s default -a "SYSTEM=\"KRB5LDAP OR compat\""
#

10.Edit the /usr/lib/security/methods.cfg file and add the following lines.

Example 5-78 Add KRB5LDAP stanza to file /usr/lib/security/methods.cfg

LDAP:
 program = /usr/lib/security/LDAP
 program_64 =/usr/lib/security/LDAP64
KRB5:
 program = /usr/lib/security/KRB5

KRB5LDAP:
options = db=LDAP,auth=KRB5

11.Communication to the IBM Directory Server from the client must be enabled:

#mksecldap -c -h nfs407.itsc.austin.ibm.com -a cn=admin -p succ3ss
#

With these settings in place, any principal that is defined in the realm
REALM1.IBM.COM can log on to nfs402.itsc.austin.ibm.com. Before trying to log
on to the system, we have to verify that the local LDAP security client daemon is
running. Otherwise, the logon attempt would fail as the AIX login process will not
be able to contact the LDAP server.

Example 5-79 Verification that secldapclntd is running

/usr/sbin/ls-secldapclntd
ldapservers=nfs407.itsc.austin.ibm.com
ldapport=389
ldapversion=3
userbasedn=ou=People,cn=aixdata
groupbasedn=ou=Groups,cn=aixdata
idbasedn=cn=aixid,ou=System,cn=aixdata
usercachesize=1000
174 Securing NFS in AIX

usercacheused=0
groupcachesize=100
groupcacheused=0
cachetimeout=300
heartbeatT=300
numberofthread=10
alwaysmaster=no
authtype=UNIX_AUTH
searchmode=ALL
defaultentrylocation=LDAP
ldaptimeout=60
userobjectclass=account,posixaccount,shadowaccount,aixauxaccount
groupobjectclass=posixgroup,aixauxgroup
#

The local LDAP security client daemon is running and we can try the integrated
logon for user sally.

Example 5-80 Sample integrated logon output

telnet loopback
AIX Version 5
(C) Copyrights by IBM and by others 1982, 2004.
login: sally
sally's Password:

* *
* *
* Welcome to AIX Version 5.3! *
* *
* *
* Please see the README file in /usr/lpp/bos for information pertinent to *
* this release of the AIX Operating System. *
* *
* *

$
$ id
uid=6023(sally) gid=1(staff) groups=1400(eng)
$
$ lsuser -a registry sally
sally registry=KRB5LDAP
$
$ klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_sally@REALM1.IBM.COM_6023
Default principal: sally@REALM1.IBM.COM
 Chapter 5. Sample implementation scenarios 175

Valid starting Expires Service principal
08/09/04 18:35:26 08/10/04 18:35:25 krbtgt/REALM1.IBM.COM@REALM1.IBM.COM
08/09/04 18:35:34 08/09/04 21:35:34 kadmin/admin@REALM1.IBM.COM
$

The user sally can log on to any machine in the Kerberos realm
REALM1.IBM.COM without being defined as a local user if the client has been
set up with the previously mentioned authentication grammar. The user’s
identification will be stored in LDAP RFC2307.

Also, because user sally has a Kerberos ticket granted automatically during the
AIX logon process, she can have access to all NFS V4 mounted file systems with
sec=krb5 option if ACLs are set for access.

5.10 Integrating NFS V4 with a Linux client
NFS V4 is shipped with the Linux kernel Version 2.6.5. For the purposes of our
example, we use Fedora Core 2 with kernel Version 2.6.5.1.358. This is the
current downloadable version of Fedora Core at the time of writing this book.

Linux was installed from the install media with the NFS services chosen at install
time. In this section, we look at setting up some basic NFS V4 scenarios using
the AUTH_SYS security mechanism.

The following definitions will be used in the example:

NFS server hostname = nfs403, OS = AIX 5.3
NFS client hostname = nfs408, OS: Fedora Core 2 with v2.6.5.1.358

kernel.
NFS Domain Name itsc.austin.ibm.com
Realm Name REALM1.IBM.COM

Figure 5-3 on page 177 gives a better view of the setup.

Note: As we write this book, the unmodified Fedora Core 2 Linux does not
contain a complete and working RPCSEC_GSS (Kerberos 5, LIPKEY,
SPKM-3) implementation. This will probably happen in Fedora Core 3 Linux.
Therefore we are unable to test this functionality in this book. You are welcome
to attempt to patch the 2.6.5.x kernel to a later kernel manually. This should
give you the missing functionality.
176 Securing NFS in AIX

Figure 5-3 Sample environment

There are many configuration files that make up a Linux NFS client and you
should make sure that they exist before you proceed:

� /etc/fstab
� /etc/auto.master
� /etc/idmapd.conf
� /etc/gssapi_mech.conf
� /etc/init.d/portmap
� /etc/init.d/rpcidmapd
� /etc/init.d/rpcgssd (required on the client when RPCSEC_GSS is used)

5.10.1 NFS server and client setup
The ID mapper daemon is required on the client. It maps NFS V4
username@domain user strings back and forth into numerous UIDs and GIDs.
The client and server domains must match. This is set in the /etc/idmapd.conf
file.

1. The domain on our server is itsc.austin.ibm.com, so we modify
/etc/idmapd.conf to reflect this. Figure 5-4 on page 178 shows this.
 Chapter 5. Sample implementation scenarios 177

Figure 5-4 /etc/idmapd.conf showing the nfsdomain

2. Our NFS server has the directories exported as shown in Figure 5-5. You can
edit /etc/exports using either a text editor or smitty mknfsexp to create your
exports list.

Figure 5-5 Samples exported directories on the NFS server

Tip: Manually editing /etc/exports is easier if you need to export more than
one file system. Run exportfs -va after applying your changes to the
exports file. With smitty, add one file system at a time.
178 Securing NFS in AIX

Name resolution between the server and client must work. This is an NFS V4
requirement.

Figure 5-6 NFS server name resolution of NFS client

Figure 5-7 NFS client name resolution of NFS server
 Chapter 5. Sample implementation scenarios 179

3. Make sure that the /etc/gssapi_mech.conf file exists. It should have been
installed by default.

Figure 5-8 /etc/gssapi_mech.conf on NFS client

4. We use /nfs as our NFS mount point.

Figure 5-9 NFS mount point on the NFS client
180 Securing NFS in AIX

5. Ensure that all NFS-related scripts start and stop automatically. The
chkconfig utility can be used for this.

Figure 5-10 chkconfig to make sure all services start and stop automatically

6. Ensure that all of the right daemons are restarted or stopped on the NFS
client.

Figure 5-11 Confirm the correct daemons are restarted or stopped on the NFS client
 Chapter 5. Sample implementation scenarios 181

Figure 5-12 tells what NFS-related daemons are running on the client, and what
UDP and TCP ports they are listening on.

Figure 5-12 Checking NFS daemons and what ports they are listening on

5.10.2 Read-only NFS V4 mount
We first look at carrying out a read-only NFS V4 mount.

1. On the server, modify /etc/exports and add a file system to export in read-only
mode.

Figure 5-13 /etc/exports on the AIX NFS server
182 Securing NFS in AIX

2. Export the directory specified on /etc/exports.

Figure 5-14 Exporting the directory on the NFS server

3. Mount the exported directory on the NFS client. We first mount it manually
and then show how the /etc/fstab file can be modified to allow mounts via
directory name.

Figure 5-15 Manually mounting an NFS V4 file system in read-only mode
 Chapter 5. Sample implementation scenarios 183

4. Look at the file system that we have just mounted. If you try to write to the
directories, you will get an error. (Remember, we mounted the directory in
read-only mode.)

Figure 5-16 Checking to see whether read-only mode works

5. Unmount the NFS file system that was mounted in the previous steps.

Figure 5-17 Unmounting the NFS V4 file system
184 Securing NFS in AIX

6. Append the following line to /etc/fstab:

nfs403:/ /nfs nfs4 ro,hard,intr,proto=tcp,port=2049,noauto 0 0

7. Mount the NFS V4 file system using the information in /etc/fstab.

Figure 5-18 NFS mount using entry in /etc/fstab

As you can see, Linux can mount AIX NFS V4 exports without any problems. We
now unmount the file system as done in step 5 on page 184 to continue with the
next section.

5.10.3 Read/write NFS V4 mounts on Linux
We can now look at the most common type of NFS mount: the read/write mount.
For this example, we add another export to our server. We create the directory
with the sticky bit set. This enables any remote user to read and write to the
directory. If the root user on the NFS V4 client writes to the directory, the
ownership will be changed to nfsnobody. Root squashing is turned on by default
(which means that the root user on the NFS client does not have root privileges
on the NFS server).

The NFS server already has a user called sally, with UID 401, created on it. We
create the same user and UID on our NFS V4 client. For this example, we are not
using LDAP. If you use LDAP, you can use users created there for testing.

1. Create user sally on the NFS V4 client.

Figure 5-19 Adding a user on the Linux client to match the NFS server
 Chapter 5. Sample implementation scenarios 185

2. We modify /etc/exports on the server to export user sally’s home directory
and export the file system.

Figure 5-20 Adding and exporting user sally’s home directory on the NFS V4 server

3.Next, we modify /etc/fstab on the client so that it looks like this:

nfs403:/ /nfs nfs4 rw,hard,intr,proto=tcp,port=2049,noauto 0 0

4. We then mount the file system.

Figure 5-21 Mounting file system on NFS client
186 Securing NFS in AIX

5. User sally should now be able to write to /nfs/exports/home/sally.

Figure 5-22 Testing write as user sally

6. We can try writing to the directory owned by sally as root.

Figure 5-23 Test on user sally’s home directory as the root user

5.10.4 Pseudo-file system in NFS V4 Linux client
Remember, the pseudo-file system functionality in NFS V4 enables the server to
present a single, seamless view of all exported file systems to an NFS V4 client.

Preparing the AIX NFS V4 server for pseudo-FS

Important: Ensure that the NFS V4 client has no directories mounted from the
NFS V4 server before proceeding. Use the umount command to unmount it.
 Chapter 5. Sample implementation scenarios 187

To set the NFS root on the server:

1. Unexport all file systems.

Example 5-81 Unexporting all file systems on the NFS server

exportfs -vu
/exports/project/proja -vers=4,ro
/exports/home/sally -vers=4,rw
/exports/acltest -vers=4:3,rw,root=nfs401:nfs406
/exports/acltest-jfs -vers=4:3,rw,root=nfs406
#

2.Stop NFS.

Example 5-82 Shutting down the NFS daemons cleanly

/etc/nfs.clean
nfs_clean: Stopping NFS/NIS Daemons
0513-044 The nfsd Subsystem was requested to stop.
0513-044 The biod Subsystem was requested to stop.
0513-006 The rpc.lockd was requested to stop
0513-044 The rpc.statd Subsystem was requested to stop.
0513-044 The rpc.mountd Subsystem was requested to stop.
0513-004 The Subsystem or Group, ypbind, is currently inoperative.
#

3. Stop the nfsrgyd subsystem.

Example 5-83 Stopping the registry daemons

stopsrc -s nfsrgyd
0513-044 The nfsrgyd Subsystem was requested to stop.
#

4. Change the NFS root to /exports and confirm the change.

Example 5-84 Setting the root node on the NFS server

/usr/sbin/chnfs -r '/exports' '-B'
#
nfsd -getnodes
#root:public
#

188 Securing NFS in AIX

5. Restart the NFS daemons.

Example 5-85 Restarting the NFS daemons

/etc/rc.nfs
Starting NFS services:
0513-059 The biod Subsystem has been started. Subsystem PID is 200780.
0513-059 The nfsrgyd Subsystem has been started. Subsystem PID is 307354.
0513-059 The nfsd Subsystem has been started. Subsystem PID is 315644.
0513-059 The rpc.mountd Subsystem has been started. Subsystem PID is 319678.
0513-059 The rpc.statd Subsystem has been started. Subsystem PID is 278604.
0513-029 The rpc.lockd Subsystem has been started. Subsystem PID 266398
Completed NFS services.
#

6. Export all of the file systems.

Example 5-86 Exporting all file systems on the NFS server

exportfs -va
exportfs: 1831-187 re-exported /exports/project/proja
exportfs: 1831-187 re-exported /exports/home/sally
#

We are now ready to move on to the client.

Mounting the pseudo-file system on the NFS V4 Linux client
The process of mounting the pseudo-file system on the client is the same as in
the previous examples. The entry in /etc/fstab will remain the same.

1. Mount the pseudo-file system on the client.

Figure 5-24 Mounting the pseudo-file system on the NFS V4 client
 Chapter 5. Sample implementation scenarios 189

2. We can now traverse the mount point to see what we have underneath.

Figure 5-25 Client view of the pseudo-root

The output shows that, although the server is exporting /exports/home/sally and
/export/project/proja, the client only sees these as /nfs/home/sally and
/nfs/project/proja. This is as a direct result of setting the nfs root on the server to
/exports.

5.11 Windows KDC and NFS V4 AIX 5.3
In this section, we set up a basic Active Directory and using the built-in KDC on
the AIX 5.3 systems with the NFS V4 RPCSEC_GSS security mechanism.

We installed Windows Server 2003 Standard Edition, which includes a KDC
server built in with the Active Directory. The Windows server was installed from
the install media with no additional options. We also installed the Windows
Server 2003 Resource Kit and the Windows Server 2003 Support Tools.

The following definitions will be used in the example:

NFS server hostname = nfs405, OS = AIX 5.3

NFS client hostname = nfs403, OS: AIX 5.3

KDC server hostname = nfs409.kdc.austin.ibm.com, OS: Windows
2003 Server Standard Edition

NFS Domain Name itsc.austin.ibm.com

Realm Name REALM1.IBM.COM

Figure 5-26 on page 191 gives a better view of the setup.
190 Securing NFS in AIX

Figure 5-26 Sample AIX environment with Windows 2003 Active Directory

1. We installed Active Directory through the Windows Server configuration
wizard on the Windows Server 2003 Standard Server.

Note: The Kerberos realm name is derived from the Active Directory
domain name. The realm name is the domain name converted to
uppercase (For the example.com domain name, the realm name is
EXAMPLE.COM.) In our case this is KDC.ITSC.AUSTIN.IBM.COM on
server nfs409.kdc.austin.ibm.com.
 Chapter 5. Sample implementation scenarios 191

The following figures show the chosen setup.

Figure 5-27 DNS Active Directory registration in Windows 2003 Server

Figure 5-28 Active Directory Installation Wizard summary
192 Securing NFS in AIX

Figure 5-29 Active Directory Installation Wizard confirmation

2. Download and install the public Windows MIT Kerberos V5 utilities, which are
available at:

http://web.mit.edu/kerberos/www/

3. We created a sample user called sally within Windows Active directory. This
is achieved by carrying out the following steps:

a. Click Start.

b. Click All Programs.

c. Click Administrative Tools.

d. Click Active Directory Users and Computers.
 Chapter 5. Sample implementation scenarios 193

http://web.mit.edu/kerberos/www/

4. We used the same method to create the user for the NFS V4 server (nfs405)
and client (nfs403). See the following figures for details.

Figure 5-30 User creation main panel

Figure 5-31 User creation password panel
194 Securing NFS in AIX

5. Next we use the Leash Kerberos Ticket Manager (leash32.exe) delivered with
the MIT Kerberos V5 utilities to get a ticket for user sally.

Figure 5-32 Kerberos ticket verification on Windows Server 2003

Use the following guidelines to configure the AIX NFS V4 server hosts.

Services running on UNIX or Linux systems can be configured with service
instance accounts in the Active Directory. This allows full interoperability.
Kerberos clients and servers on UNIX systems can authenticate using the
Windows Server 2003 Kerberos server, and Windows 2000 Professional-based
clients can authenticate to Kerberos services that support GSS-API.

Unlike Kerberos principal names, Windows Server 2003 account names are not
multipart. Because of this, it is not possible to directly create an account of the
name nfs/UNIX_SRV@example.com. Such a principal instance is created
through the service principal name mappings.

Create a service instance account in the Active Directory:

1. Use the Active Directory Management tool to create a user account for the
NFS V4 server; for example, create an account with the name nfs405.

2. Use the ktpass tool to set up an identity mapping for the user account. Use
this command (from the Windows COMMAND prompt):

ktpass -princ service-instance@REALM -mapuser account-name -pass
password -out UNIXmachine.keytab

The format of the Kerberos service-instance name is: nfs/host@realm_name,
for example:

ktpass.exe -princ nfs/nfs405@KDC.ITSC.AUSTIN.IBM.COM -mapuser nfs405
-pass nfs405 -out c:\misc\nfs405.keytab
 Chapter 5. Sample implementation scenarios 195

In this case, an account is created with the name sample, and a service
principal name mapping is added for sample/UNIX_SRV.example.com. This is
the purpose of using ktpass with the -princ and -mapuser switches.

Figure 5-33 Sample output of ktpass tool

3. Verify the created SPN (service principal name) using the setspn command
on Windows. The SPN must show the NFS service principal; otherwise, the
systems will be not be able to authenticate with the KDC.

Figure 5-34 Output of setpsn tool
196 Securing NFS in AIX

4. Create the /etc/krb5/krb5.conf file on the AIX 5.3 server.

Example 5-87 Sample Kerberos configuration file for the Windows Active Directory

[libdefaults]
 default_realm = KDC.ITSC.AUSTIN.IBM.COM
 default_keytab_name = FILE:/etc/krb5/krb5.keytab
 default_tkt_enctypes = des-cbc-md5 des-cbc-crc
 default_tgs_enctypes = des-cbc-md5 des-cbc-crc
[realms]
 KDC.ITSC.AUSTIN.IBM.COM = {
 kdc = nfs409.kdc.itsc.austin.ibm.com:88
 admin_server = nfs409.kdc.itsc.austin.ibm.com:749
 default_domain = kdc.itsc.austin.ibm.com
 }

[domain_realm]
 .kdc.itsc.austin.ibm.com = KDC.ITSC.AUSTIN.IBM.COM
 nfs409.kdc.itsc.austin.ibm.com = KDC.ITSC.AUSTIN.IBM.COM

[logging]
 kdc = FILE:/var/krb5/log/krb5kdc.log
 admin_server = FILE:/var/krb5/log/kadmin.log
 default = FILE:/var/krb5/log/krb5lib.log

5. Merge the keytab file with the /etc/krb5/krb5.keytab file on the AIX System by
copying the keytab file to the AIX system (for example, using binary FTP),
then entering this command in the directory that it has been copied to:

/usr/krb5/sbin/ktutil

Note: On Windows, you cannot map multiple service instances to the
same user account. Therefore we recommend that you do not add another
instance with the same name.

Attention: Be sure to have set all host names using the Fully Qualified
Domain Name as used within your Active Directory; otherwise, the gssd
daemon will not be able to authenticate with the Windows KDC. In our
example, all systems used <hostname>.kdc.austin.ibm.com.

Note: The default encryption type entries, default_txx_enctype, are optional.
However, if the Kerberos client receives an encryption type error, set the
default encryption type to either des-cbc-md5 or des-cbc-crc.
 Chapter 5. Sample implementation scenarios 197

Then, at the ktutil command prompt, enter this command (where
UNIX-SRV.keytab is the name of the keytab file you created in step 2 on
page 195):

rkt UNIX_SRV.keytab

Exit kutil by entering quit at the kutil prompt.

Example 5-88 Adding the Windows keytab file to the AIX System

/usr/krb5/sbin/ktutil
ktutil: rkt nfs403.keytab
ktutil: l
slot KVNO Principal
------ ------ --
 1 4 nfs/nfs403@KDC.ITSC.AUSTIN.IBM.COM
ktutil: wkt /etc/krb5/krb5.keytab
ktutil: quit
#

6. Verify that the system can get tickets.

Example 5-89 Verification of the keytab file

kinit -kt /etc/krb5/krb5.keytab nfs/nfs403@KDC.ITSC.AUSTIN.IBM.COM
#
klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: nfs/nfs403@KDC.ITSC.AUSTIN.IBM.COM

Valid starting Expires Service principal
08/04/04 17:05:20 08/05/04 03:05:20
krbtgt/KDC.ITSC.AUSTIN.IBM.COM@KDC.ITSC.AUSTIN.IBM.COM
 Renew until 08/05/04 17:05:20
#

7. Set up your NFS V4 AIX server and client as already described.

Example 5-90 Configuration of the NFS V4 Windows KDC client

chnfsdom nfs.ibm.com
#
#chnfsdom
Current local domain: nfs.ibm.com
#
#nfshostkey -p nfs/nfs403@KDC.ITSC.AUSTIN.IBM.COM -f /etc/krb5/krb5.keytab
#
#nfshostkey -l
nfs/nfs403@KDC.ITSC.AUSTIN.IBM.COM
/etc/krb5/krb5.keytab
#

198 Securing NFS in AIX

#chnfsrtd -a KDC.ITSC.AUSTIN.IBM.COM nfs.ibm.com
#
#chnfsrtd
kdc.itsc.austin.ibm.com nfs.ibm.com
#
#chnfs -S -B
#
#/etc/rc.nfs

8. Now, we can mount the exported file system.

Example 5-91 Sample mount output

mount -o vers=4,sec=krb5 nfs403:/exports/home /nfs
#
kinit sally
Password for sally@KDC.ITSC.AUSTIN.IBM.COM:
#
cd /nfs
#
ls
bob joe lost+found mary sally

For further details about configuring AIX Integrated Login using Kerberos and
Windows Active Directory, see the AIX 5.3 online documentation chapter about
security and authenticating to AIX using Kerberos.

5.12 Setting up Kerberos cross-realm access
If you have several realms and you want to enable access throughout them, then
you should activate cross-realm access on your server and client systems.

The following definitions will be used in the example:

NFS Domain Name itsc.austin.ibm.com
Realm Name REALM1.IBM.COM

KDC server hostname = nfs407, OS = AIX 5.3
NFS client hostname = nfs406, OS: AIX 5.3

Note: Setting up cross-realm access is necessary to support systems
belonging to multiple realms sharing access to secure data. Multiple realms
can reside within a single NFS V4 domain to share user and group definitions.
If the realms reside in different NFS V4 domains, then use of foreign domain
identity mappings is likely required to provide access to secured data.
 Chapter 5. Sample implementation scenarios 199

Realm Name REALM2.IBM.COM
KDC server hostname = nfs403, OS = AIX 5.3
NFS server hostname = nfs404, OS = AIX 5.3

Figure 5-35 gives a better view of the setup.

Figure 5-35 Sample cross realm layout

The goal of this sample is to show that a principal with tickets in
REALM1.IBM.COM is capable of accessing NFS data exported from a server in
REALM2.IBM.COM.

5.12.1 Add the krbtgt service principal to every KDC server
For a KDC in one realm to authenticate Kerberos users in a different realm, it
must share a key with the KDC in the other realm. In both databases, there must
be krbtgt service principals for realms.These principals should all have:

� The same passwords
200 Securing NFS in AIX

� Key version numbers
� Encryption types

For example, if the administrators of REALM1.IBM.COM and REALM2.IBM.COM
want to enable authentication across the realms, they would run the following
commands on the KDCs in both realms:

kadmin: addprinc -requires_preauth krbtgt/REALM1.IBM.COM@REALM2.IBM.COM

and

kadmin: addprinc -requires_preauth krbtgt/REALM2.IBM.COM@REALM1.IBM.COM

Even if most principals in a realm are generally created with the requires_preauth
flag enabled, this flag is not desirable on cross-realm authentication keys
because doing so makes it impossible to disable preauthentication on a
service-by-service basis. Disabling it as in the example above is recommended.

It is also very important that these principals have good passwords. MIT
recommends that the TGT principal passwords be at least 26 characters of
random ASCII text.

Example 5-92 shows the command and output as performed on our KDC server
in realm REALM1.IBM.COM.

Example 5-92 kadmin output on nfs407 KDC server

kadmin: addprinc -requires_preauth krbtgt/REALM1.IBM.COM@REALM2.IBM.COM
WARNING: no policy specified for krbtgt/REALM1.IBM.COM@REALM2.IBM.COM;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Enter password for principal "krbtgt/REALM1.IBM.COM@REALM2.IBM.COM":
Re-enter password for principal "krbtgt/REALM1.IBM.COM@REALM2.IBM.COM":
Principal "krbtgt/REALM1.IBM.COM@REALM2.IBM.COM" created.
kadmin: addprinc -requires_preauth krbtgt/REALM2.IBM.COM@REALM1.IBM.COM
WARNING: no policy specified for krbtgt/REALM2.IBM.COM@REALM1.IBM.COM;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Enter password for principal "krbtgt/REALM2.IBM.COM@REALM1.IBM.COM":
Re-enter password for principal "krbtgt/REALM2.IBM.COM@REALM1.IBM.COM":
Principal "krbtgt/REALM2.IBM.COM@REALM1.IBM.COM" created.
kadmin:
kadmin: getprinc krbtgt/REALM2.IBM.COM@REALM1.IBM.COM
Principal: krbtgt/REALM2.IBM.COM@REALM1.IBM.COM
Expiration date: [never]
Last password change: Thu Aug 19 18:14:06 CDT 2004
Password expiration date: [none]
Maximum ticket life: 1 day 00:00:00
Maximum renewable life: 7 days 00:00:00
Last modified: Thu Aug 19 18:14:07 CDT 2004 (admin/admin@REALM1.IBM.COM)
 Chapter 5. Sample implementation scenarios 201

Last successful authentication: [never]
Last failed authentication: [never]
Failed password attempts: 0
Number of keys: 4
Key: vno 1, Triple DES cbc mode with HMAC/sha1,
no salt
Key: vno 1, ArcFour with HMAC/md5,
no salt
Key: vno 1, AES-256 CTS mode with 96-bit SHA-1 HMAC,
no salt
Key: vno 1, DES cbc mode with RSA-MD5,
no salt

Attributes:

Policy: [none]

The same has to be done on the KDC server in the other realm.

Example 5-93 kadmin output on nfs403 KDC server

/usr/krb5/sbin/kadmin -p admin/admin
Authenticating as principal admin/admin with password.
Password for admin/admin@REALM2.IBM.COM:
kadmin: addprinc -requires_preauth krbtgt/REALM1.IBM.COM@REALM2.IBM.COM
WARNING: no policy specified for krbtgt/REALM1.IBM.COM@REALM2.IBM.COM;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Enter password for principal "krbtgt/REALM1.IBM.COM@REALM2.IBM.COM":
Re-enter password for principal "krbtgt/REALM1.IBM.COM@REALM2.IBM.COM":
Principal "krbtgt/REALM1.IBM.COM@REALM2.IBM.COM" created.
kadmin: addprinc -requires_preauth krbtgt/REALM2.IBM.COM@REALM1.IBM.COM
WARNING: no policy specified for krbtgt/REALM2.IBM.COM@REALM1.IBM.COM;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Enter password for principal "krbtgt/REALM2.IBM.COM@REALM1.IBM.COM":
Re-enter password for principal "krbtgt/REALM2.IBM.COM@REALM1.IBM.COM":
Principal "krbtgt/REALM2.IBM.COM@REALM1.IBM.COM" created.

kadmin: getprinc krbtgt/REALM2.IBM.COM@REALM1.IBM.COM
Principal: krbtgt/REALM2.IBM.COM@REALM1.IBM.COM
Expiration date: [never]
Last password change: Thu Aug 19 18:18:10 2004
Password expiration date: [none]
Maximum ticket life: 1 day 00:00:00
Maximum renewable life: 7 days 00:00:00
Last modified: Thu Aug 19 18:18:10 2004 (admin/admin@REALM2.IBM.COM)
Last successful authentication: [never]
Last failed authentication: [never]
202 Securing NFS in AIX

Failed password attempts: 0
Number of keys: 4
Key: vno 1, Triple DES cbc mode with HMAC/sha1,
no salt
Key: vno 1, ArcFour with HMAC/md5,
no salt
Key: vno 1, AES-256 CTS mode with 96-bit SHA-1 HMAC,
no salt
Key: vno 1, DES cbc mode with RSA-MD5,
no salt

Attributes:

Policy: [none]
kadmin:

5.12.2 Kerberos configuration file changes on the KDC server,
NFS V4 client and server

1. We have to add the new realm to /etc/krb5/krb5.conf using vi to modify the
two stanzas [realms] and [domain_realm]. Example 5-94 shows the changed
contents of the realms stanza.

Example 5-94 New realms stanza entries

[realms]
 REALM1.IBM.COM = {
 kdc = nfs407.itsc.austin.ibm.com:88
 admin_server = nfs407.itsc.austin.ibm.com:749
 default_domain = itsc.austin.ibm.com
 }

 REALM2.IBM.COM = {
 kdc = nfs403.itsc.austin.ibm.com:88
 admin_server = nfs403.itsc.austin.ibm.com:749
 default_domain = itsc.austin.ibm.com
 }

2. Now we change the domain_realm stanza as shown in Example 5-95.

Example 5-95 Correct domain_realm stanza for cross-realm access

[domain_realm]
nfs407.itsc.austin.ibm.com = REALM1.IBM.COM
nfs403.itsc.austin.ibm.com = REALM2.IBM.COM
 Chapter 5. Sample implementation scenarios 203

Example 5-96 Incorrect domain_realm stanza for cross-realm access

[domain_realm]
 .itsc.austin.ibm.com = REALM1.IBM.COM
 nfs407.itsc.austin.ibm.com = REALM1.IBM.COM
 .itsc.austin.ibm.com = REALM2.IBM.COM
 nfs403.itsc.austin.ibm.com = REALM2.IBM.COM

3. Now we restart the gssd daemon using stopsrc -g gssd and startsrc -g
gssd.

5.12.3 Add NFS domain-to-realm map on NFS V4 client and server
The NFS domain is the same, so we do not need identity mapping.

To enable the nfsrgyd daemon to map identification requests, we have to add an
additional NFS domain-to-realm map into file /etc/nfs/realm.map; otherwise, the
NFS user nobody will be mapped.

Example 5-97 Cross-realm NFS domain-to-realm map file on nfs406 client

chnfsrtd -a realm2.ibm.com itsc.austin.ibm.com
#
chnfsrtd
realm1.ibm.com itsc.austin.ibm.com
realm2.ibm.com itsc.austin.ibm.com
pg /etc/nfs/realm.map
realm1.ibm.com itsc.austin.ibm.com
realm2.ibm.com itsc.austin.ibm.com

5.12.4 Client access verification
Example 5-98 on page 205 shows verification from the client to a principal in the
other realm using the kinit command.

Important: Do not try to map one DNS domain into a second Kerberos realm
map. Example 5-96 shows an invalid entry in the krb5.conf file.

Note: Due to internal kernel caching, it may take up to two minutes until
gssd recognizes the change.

Note: You have to recycle the nfsrgyd daemon for the new mapping to be
loaded.
204 Securing NFS in AIX

Example 5-98 kinit into the new added realm

klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: sally@REALM1.IBM.COM

Valid starting Expires Service principal
08/19/04 18:24:20 08/20/04 18:23:56 krbtgt/REALM1.IBM.COM@REALM1.IBM.COM
08/19/04 18:24:24 08/20/04 18:23:56 krbtgt/REALM2.IBM.COM@REALM1.IBM.COM
#
kinit mary@REALM2.IBM.COM
Password for mary@REALM2.IBM.COM:
klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: mary@REALM2.IBM.COM

Valid starting Expires Service principal
08/19/04 18:34:36 08/20/04 18:34:36 krbtgt/REALM2.IBM.COM@REALM2.IBM.COM
 Renew until 08/20/04 18:34:55

5.12.5 Client access mount using cross-realms
At this stage the Kerberos environment modification has been validated. But our
target is to access the server in REALM2.IBM.COM without having to use kinit
into the realm. That is shown in the next sample.

Example 5-99 Client mount to a server within realm2

kdestroy
klist
Unable to get cache name (ticket cache: /var/krb5/security/creds/krb5cc_0).
 Status 0x96c73ac3 - No credentials cache found.
mount
 node mounted mounted over vfs date options
-------- --------------- --------------- ------ ------------ ---------------
/dev/hd4 / jfs Aug 19 18:28 rw,log=/dev/hd8
 /dev/hd2 /usr jfs Aug 19 18:28 rw,log=/dev/hd8
 /dev/hd9var /var jfs Aug 19 18:28 rw,log=/dev/hd8
 /dev/hd3 /tmp jfs Aug 19 18:29 rw,log=/dev/hd8
 /dev/hd1 /home jfs Aug 19 18:29 rw,log=/dev/hd8
 /proc /proc procfs Aug 19 18:29 rw
 /dev/hd10opt /opt jfs Aug 19 18:29 rw,log=/dev/hd8
 /dev/log_lv /var/nfs4log jfs Aug 19 18:29 rw,log=/dev/hd8
 /dev/home_lv /exports/home jfs Aug 19 18:29 rw,log=/dev/hd8
 /dev/exname_lv /local/trans jfs Aug 19 18:29 rw,log=/dev/hd8
 /dev/projA_lv /exports/project/projA jfs2 Aug 19 18:29
rw,log=/dev/loglv00
 Chapter 5. Sample implementation scenarios 205

 /dev/projB_lv /exports/project/projB jfs2 Aug 19 18:29
rw,log=/dev/loglv00

kinit sally
Password for sally@REALM1.IBM.COM:
mount -o vers=4,sec=krb5 nfs404:/ /nfs
mount
 node mounted mounted over vfs date options
-------- --------------- --------------- ------ ------------ ---------------
 /dev/hd4 / jfs Aug 19 18:28 rw,log=/dev/hd8
 /dev/hd2 /usr jfs Aug 19 18:28 rw,log=/dev/hd8
 /dev/hd9var /var jfs Aug 19 18:28 rw,log=/dev/hd8
 /dev/hd3 /tmp jfs Aug 19 18:29 rw,log=/dev/hd8
 /dev/hd1 /home jfs Aug 19 18:29 rw,log=/dev/hd8
 /proc /proc procfs Aug 19 18:29 rw
 /dev/hd10opt /opt jfs Aug 19 18:29 rw,log=/dev/hd8
 /dev/log_lv /var/nfs4log jfs Aug 19 18:29 rw,log=/dev/hd8
 /dev/home_lv /exports/home jfs Aug 19 18:29 rw,log=/dev/hd8
 /dev/exname_lv /local/trans jfs Aug 19 18:29 rw,log=/dev/hd8
 /dev/projA_lv /exports/project/projA jfs2 Aug 19 18:29
rw,log=/dev/loglv00
 /dev/projB_lv /exports/project/projB jfs2 Aug 19 18:29
rw,log=/dev/loglv00
nfs404 / /nfs nfs4 Aug 20 14:36 vers=4,sec=krb5
#
cd /nfs/exports2/home
ls -ltr
total 48
drwxr-sr-x 2 sally staff 512 Jul 30 19:42 sally
drwxr-sr-x 2 bob staff 512 Jul 30 19:42 bob
drwxr-sr-x 2 mary staff 512 Jul 30 19:42 mary
drwxr-sr-x 2 joe staff 512 Jul 30 19:42 joe
drwxrwx--- 2 root system 512 Aug 16 11:09 lost+found
#

206 Securing NFS in AIX

Chapter 6. Problem determination

This chapter provides guidance in carrying out problem determination with
NFS V4. It is beyond to the scope of this book to cover the possible problems, but
we will guide you through the thought process you should consider when trying to
debug NFS V4 problems.

We start by giving a brief introduction to the tools and aids available with AIX and
other third-party tools we have found useful. We then guide you through issues
that we encountered while writing the book and how we resolved them.

The sections covered in this chapter are as follows:

� Problem determination tools and techniques

� AIX problem determination tools and aids for NFS

� IBM NAS problem determination tools and aids

� IBM Tivoli Directory Server problem determination tools and aids

� Third-party problem determination tools and aids

� File system exports problem

� Mount problems

� Major GSS-API error codes

� Kerberos V5 status codes

6

© Copyright IBM Corp. 2004. All rights reserved. 207

6.1 Problem determination tools and techniques
Before we can carry out any kind of problem determination, we need to be
familiar with the tools that are available with AIX and provided by third parties.
Third-party tools such as Ethereal (free at http://www.ethereal.com) can be
very useful when you need to examine a tcpdump or an iptrace. Of course, AIX
provides all of the necessary tools to convert an iptrace to something readable to
the human eye, but it is not always easy to look through a large trace.

You may find additional useful information on this topic in Introduction to the IBM
Problem Determination Tools, SG24-6296.

6.2 AIX problem determination tools and aids for NFS
We begin by looking at the tools provided by AIX. For more about using these
tools, refer to the relevant man pages and AIX system reference documentation.

6.2.1 Enabling syslogd
NFS uses the syslog to write its error and debug information. Before you carry
out any problem determination, we recommend that you turn syslog logging on.
The following steps take you through the process of enabling syslog logging (if it
is not already enabled on your system).

1. Edit the /etc/syslog.conf file and add an entry:

*.debug /var/logs/syslog/syslog.out rotate time 1d archive \
/var/logs/syslog/archive/

We used extra parameters in this example to enable us to automatically rotate
the log on a daily basis.

2. We now create the /var/logs/syslog and /var/logs/syslog/archive directories.
We also create the /var/logs/syslog/syslog.out log file (Example 6-1).

Example 6-1 Creating the necessary directories and log file

mkdir /var/logs/syslog
#
mkdir /var/logs/syslog/archive

Tip: We created a separate file system for the syslog output and mounted it to
/var/logs/. It is always good to do this, as logging daemons are notorious at
filling up file systems. Allowing the syslog daemon to write to the root file
system, then having it subsequently fill up, can lead to service interruption.
208 Securing NFS in AIX

http://www.ethereal.com

#
ls -ld /var/logs/syslog
drwxr-sr-x 3 root sys 512 Aug 10 18:59 /var/logs/syslog
#
ls -ld /var/logs/syslog/archive
drwxr-sr-x 2 root sys 512 Aug 10 18:59 /var/logs/syslog/archive
#
touch /var/logs/syslog/syslog.out
#
ls -al /var/logs/syslog/syslog.out
-rw-r--r-- 1 root sys 168 Aug 10 19:00 /var/logs/syslog/syslog.out
#

3. We tell the syslogd that we have made changes to its configuration file and
that it should reread it.

refresh -s syslogd
0513-095 The request for subsystem refresh was completed successfully.
#

Example 6-21 on page 220 shows sample entries in the syslog output file.

4. When you have completed your problem determination steps, you may want
to disable syslog logging. Doing so is usually a personal preference. Some
systems administrators prefer to have all logging turned on while others
choose to do it on demand. To disable syslog logging, comment out the line
that was added to /etc/syslog.conf in step 1 on page 208 and refresh the
syslogd as shown in Example 6-2.

Example 6-2 Disabling syslogd logging

#*.debug /var/logs/syslog/syslog.out rotate time 1d archive \
/var/logs/syslog/archive/
#
refresh -s syslogd
0513-095 The request for subsystem refresh was completed successfully.
#

Using the setting for syslogd shown in Example 6-2 may log more information
than you need while running your system in production mode. You can set
syslog to log only ERROR in the /etc/syslog.conf file. This limits the amount of
data written to the log file. This is the new line in the /etc/syslog.conf file:

#*.error /var/logs/syslog/syslog.out rotate time 1d archive \
/var/logs/syslog/archive/
 Chapter 6. Problem determination 209

6.2.2 Using iptrace and ipreport
iptrace is very useful when trying to debug problems that are not obvious. It is not
the purpose of this book to show you how to interpret an iptrace, but to show you
how to use the available tools. Follow these steps to create an iptrace:

1. Run the following command to start an iptrace:

startsrc -s iptrace -a “-a -d [source host] -b [LogFile]”

2. Recreate the problem scenario.

3. Stop the iptrace by running:

stopsrc -s iptrace

We now decode the iptrace file into a readable format using the ipreport
command. You can also use Ethereal to decode the trace file (see 6.5.2, “Using
the Ethereal utility” on page 212). We recommend either of two ways to decode
the iptrace file:

� The first method is to decode everything:

ipreport -v [LogFile] > [OutputFile]

� The second method is to decode RPC packets only:

ipreport -nsrv [LogFile] > [OutputFile]

If you are trying to debug NFS V2 or NFS V3 problems, then the second method
would be the correct option to choose. For NFS V4, we recommend that you use
the first method. This enables you to decode the Kerberos packets as well as all
other relevant information.

6.2.3 Using the fuser command
The fuser command lists the process numbers of local processes that use the
local or remote files specified by the file parameter. For block special devices, the
command lists the processes that use any file on that device. It can be useful
when trying to determine mount or umount problems.

6.2.4 Using the rpcinfo command
The rpcinfo command reports the status of remote procedure call (RPC)
servers. It is very useful when you need to check whether a system is running the
correct NFS programs.
210 Securing NFS in AIX

6.2.5 Using the showmount command
The showmount command displays a list of all clients that have remotely mounted
file systems. The showmount -a command cannot show any NFS V4 exported file
systems. We recommend using the nfs4cl command on the NFS V4 client.

6.2.6 Using the nfs4cl command
The nfs4cl command displays or modifies current NFS V4 statistics and
properties. See the showmount command in the previous section.

6.2.7 Using the nfsstat command
The nfsstat command displays statistical information about NFS and RPC calls.

6.2.8 Using the errpt command
The errpt command generates a report of logged errors from the error log. It is
useful when you are trying to determine why a daemon is core dumping or not
starting. For the most detailed output, run the command in the following way:

errpt -a | more

6.3 IBM NAS problem determination tools
By default, krb5kdc and kadmind log directly to a file specified in the [logging]
stanza of the krb5.conf file. (The default location of this file is /var/krb5/log/.)
Logging to syslog instead can give you more control over the amount of logged
information. The krb5kdc process logs an informational message for every ticket
it issues. On a busy KDC, this can cause the log file to grow rapidly. If you log to
syslog, you can log only the KDC errors. Table 6-1 shows the default files.

Table 6-1 IBM NAS Server log files

Filename Description

krb5kdc.log Log file of the KDC server process
krb5kdc

kadmin.log Log file of the administrative server
process kadmind
 Chapter 6. Problem determination 211

6.4 Tivoli Directory Server problem determination tools
When a problem occurs that appears to be related to the IBM Tivoli Directory
Server, you should first check the following files for error messages. By default,
Tivoli Directory Server uses the /var/ldap directory to generate and write its error
and debug information. The files shown in Example 6-2 are used by default.

Table 6-2 IBM Tivoli Directory Server log files

If you want to have more information logged by Tivoli Directory Server, you can
change the level of variable ibm-slapdSysLogLevel in the /etc/ibmslapd.conf file.

6.5 Third-party problem determination tools
Here we will discuss tools that complement available AIX tools.

6.5.1 Using the lsof command
lsof stands for list open files. It lists information about files that are currently
open by processes. The main difference between lsof and fuser is that lsof
takes files, file systems, and PIDs as arguments, but fuser only accepts files and
file systems. If fuser does not give you any output, try using lsof.

lsof for AIX is available for download from the following sites:

http://aixpdslib.seas.ucla.edu
http://www.bullfreeware.com

6.5.2 Using the Ethereal utility
Ethereal is used by network professionals around the world for troubleshooting,
analysis, software and protocol development, and education. It has all of the
standard features you would expect in a protocol analyzer, and several features

Filename Description

ibmslapd.log Log file of the Tivoli Directory Server main
server process

db2cli.log Log file for Tivoli Directory Server DB2
client interface

Restriction: Third-party tools are not supported by IBM. If you choose to use
these tools, you do so at your own risk.
212 Securing NFS in AIX

http://www.bullfreeware.com
http://aixpdslib.seas.ucla.edu

not seen in any other product. Its open source license enables experts in the
networking community to add enhancements.

Ethereal can be installed on a Windows or Linux system. It is capable of reading
the iptrace output.

Figure 6-1 Sample screen shot of Ethereal

Ethereal is available for download from:

http://www.ethereal.com

6.6 General NFS V4 problems
The following messages may appear when using NFS V4.

6.6.1 Warning: EIM is not configured
After installing AIX 5.3 and activating an NFS V4 NFS domain the error entry
shown in Example 6-3 on page 214 is logged into syslogd output file on the
server and client side.
 Chapter 6. Problem determination 213

http://www.ethereal.com

Example 6-3 EIM syslogd error entry

Aug 16 11:19:51 nfs403 syslog: nfsrgyd: dlopen(/usr/lib/libeim.a(shr.o))
failed: No such file or directory
Aug 16 11:19:51 nfs403 syslog: nfsrgyd: Warning: EIM is not configured

Problem determination steps
Not applicable

Solution
The message is telling you that Enterprise Identity Mapping (EIM) is not
configured. If you are not using EIM, you can safely ignore the message. If you
are using EIM, consult your EIM documentation for further assistance.

6.6.2 Realm is already mapped to domain
Trying to add a new NFS domain-to-realm map using chnfsrtd results in the
message in Example 6-4.

Example 6-4 chnfsrtd message for duplicate domain

chnfsrtd -a realm2.ibm.com nfs1.itsc.austin.ibm.com
Realm (realm2.ibm.com) is already mapped to domain (itsc.austin.ibm.com)
#

Problem determination steps
Use the chnfsrtd command without any argument to see the current settings.

Example 6-5 Output of chnfsrtd

chnfsrtd
realm2.ibm.com nfs.itsc.austin.ibm.com
#

Solution
This behavior is expected. You cannot map the same realm to a second NFS
domain.
214 Securing NFS in AIX

6.7 Exporting file systems
The following error messages may appear when exporting file systems.

6.7.1 Exportfs: cannot change the v4 root...
We changed the /etc/exports file and added the following line to adopt the new
pseudo-root FS:

/exports -nfsroot

The full /etc/exports file looked as shown in Example 6-6.

Example 6-6 The complete /etc/exports file for pseudo-root FS modification

/exports -nfsroot
/local/trans -vers=4,rw,exname=/exports/trans
/local/dept -vers=4,rw,exname=/exports/dept
/local/home -vers=4,rw,exname=/exports/home
/usr/codeshare/ThirdPartyProgs -vers=4,ro,exname=/exports/ThirdPartyProgs

After this, the /etc/rc.nfs command always fails with the message shown in
Example 6-7.

Example 6-7 /etc/rc.nfs failure

/etc/rc.nfs
Starting NFS services:
exportfs: cannot change the V4 root to /exports

Problem determination steps
Not applicable.

Solution
Check that the /exports directory exists. After creating the directory using
command mkdir /exports everything worked fine.

6.7.2 Exportfs: /<path>: Invalid argument
After unexporting all file systems using the exportfs -ua command and
subsequent export using the exportfs -va command, we get following output:

Example 6-8 Invalid argument while running exportfs -va

exportfs -ua
exportfs
 Chapter 6. Problem determination 215

exportfs: nothing exported

exportfs -va
exportfs: /exports2: Invalid argument
exportfs: /exports2/home: Invalid argument
exportfs: /exports2/project/projA: Invalid argument
exportfs: /exports2/project/projB: Invalid argument

Problem determination steps
Check whether the pseudo-root FS has been set using the nfsd -getnodes
command.

Example 6-9 Output of nfsd -getnodes command for invalid argument problem

nfsd -getnodes
#root:public
/prootfs:/prootfs

Next step is to check whether the /etc/exports file contains the -nfsroot option.

Example 6-10 Check whether the -nfsroot option is in file /etc/exports

pg /etc/exports
/exports2 -vers=4,sec=krb5:sys,rw
/exports2/home -vers=4,sec=krb5:sys,rw
/exports2/project/projA -vers=4,sec=krb5:sys,ro
/exports2/project/projB -vers=4,sec=krb5:sys,ro

Finally we verified that the nfsd daemon shows the -root / option.

Example 6-11 Check that nfsd is running with -root / option

ps -ef |grep nfs |grep -v grep
 root 286924 159906 0 17:53:33 - 0:00 /usr/sbin/nfsd -root / 3891

Solution
The problem is caused by the missing -nfsroot option within the /etc/exports file.
After adding the / -nfsroot option to the /etc/exports file as shown in the next
example, everything worked fine.

Example 6-12 Correct /etc/exports file with -nfsroot option set to /

pg /etc/exports
/ -nfsroot
/exports2 -vers=4,sec=krb5:sys,rw
/exports2/home -vers=4,sec=krb5:sys,rw
216 Securing NFS in AIX

/exports2/project/projA -vers=4,sec=krb5:sys,ro
/exports2/project/projB -vers=4,sec=krb5:sys,ro
#
exportfs -va
exported /exports2
exported /exports2/home
exported /exports2/project/projA
exported /exports2/project/projB
#
nfsd -getnodes
#root:public
/:/

6.7.3 Exportfs: /var/<logfile>: Too many levels of symbolic links...

We changed the /etc/exports file to include this line to adopt the exname option:

/var/nfs4log -vers=4,sec=krb5:sys,ro,exname=/exports/logs

The full /etc/exports file looked as shown in Example 6-13.

Example 6-13 The complete /etc/exports file after modification

/exports -vers=4,sec=krb5:krb5i:krb5p:sys,rw
/exports/home -vers=4,sec=krb5:sys,rw
/exports/project/projA -vers=4,sec=krb5:sys,ro
/exports/project/projB -vers=4,sec=krb5:sys,ro
/var/nfs4log -vers=4,sec=krb5:sys,ro,exname=/exports/logs

After this, the exportfs -va command always fails with the message shown in
Example 6-14.

Example 6-14 exportfs -va failure

exportfs: 1831-187 re-exported /exports
exportfs: 1831-187 re-exported /exports/home
exportfs: 1831-187 re-exported /exports/project/projA
exportfs: 1831-187 re-exported /exports/project/projB
exportfs: /var/nfs4log: There are too many levels of symbolic links to
translate a path name.

Problem determination steps
Check to see what the nfsroot is set to with the nfsd -getnodes command. The
exname must begin with the nfsroot.
 Chapter 6. Problem determination 217

Solution
The use of the exname option with the pseudo-file system was incorrect. If you
start using the exname option in the /etc/exports files you have to take the
following into account:

1. Either all Version 4 exports must specify an external name, or none of the
exports specify an external name.

2. The nfsroot, /exports, must not be exported.

After removing all non-exname entries from the /etc/exports file, the exportfs
command ran without any further problems.

6.8 Mount problems
The NFS client can experience various types of mount problems, and in this
section we look at the most common ones. Remember that if you are using NFS
V4 with Kerberos, problem determination should always start at the client side. In
this case using an iptrace should also be mandatory to break down the root
cause of your problem. See “Sample iptrace output” on page 271 for a sample
iptrace breakdown.

6.8.1 General mount problem

Problem
The mount on a client fails with access denied as shown in Example 6-15.

Example 6-15 Client mount returns access denied

mount nfs403:/ /mnt
mount: 1831-011 access denied for nfs403:/
mount: 1831-008 giving up on:
nfs403:/
The file access permissions do not allow the specified action.

Problem determination steps
Check which NFS version has been used on the server to export the file system.
In this case, the file system was exported using option:

/exports2 -vers=4,sec=krb5:sys,rw

Solution
Caused by use of the vers=4 option on the client; by default, NFS V3 is used.
218 Securing NFS in AIX

6.8.2 Pseudo-root and nfs4cl problems

Problem
This command works fine on the client:

mount -o vers=4,sec=krb5 nfs404:/ /nfs

However, this command output seems to be incorrect:

nfs4cl showfs

Example 6-16 Incorrect output from the nfs4cl showfs command

Server Remote Path fsid Local Path
-------- --------------- --------------- ---------------
nfs404 10:13 /nfs/projB

Example 6-17 shows the output we expect to see.

Example 6-17 Correct output from the nfs4cl showfs command

Server Remote Path fsid Local Path
-------- --------------- --------------- ---------------
nfs404 10:13 /nfs/project/projB

We see in Example 6-16 that in the Local Path column, nfs4cl showfs reports
the mounted file system incorrectly. Example 6-17 shows the correct output.

Problem determination steps
Not applicable.

Solution
This is a problem with the nfs4cl command on AIX 5.3.

6.8.3 ‘vers’ mount option error: “...Program not registered”
The mount command with option vers=4 reports the error in Example 6-18.

Example 6-18 Errors when the mount command is used

mount -o vers=4,sec=krb5 nfs404:/ /nfs
RPC: 1832-019 Program not registered
Verify the NFS local domain has been set, and the nfsrgyd process is running

Note: As we wrote this book, this problem had been identified as a bug and
should be resolved in a future Maintenance Level for AIX 5.3.
 Chapter 6. Problem determination 219

Problem determination steps

Check that the NFS domain is set using the chnfsdom command, and that the
associated NFS registry daemon nfsrgyd is running.

Example 6-19 Confirming the NFS domain is set and nfsrgyd is running

chnfsdom
Current local domain: itsc.austin.ibm.com
#
lssrc -s nfsrgyd
Subsystem Group PID Status
 nfsrgyd nfs inoperative

Solution

Start the nfsrgyd using /etc/rc.nfs.

6.8.4 ‘vers’ mount option error: “...server <name> not responding”
If you try to mount with an unsupported NFS version number, the mount
command will hang with message shown in Example 6-20.

Example 6-20 Mount command used with an incorrect NFS version number

mount -o vers=5,sec=krb5 nfs402:/ /nfs
mount: 1831-010 server nfs402 not responding: RPC: Success
mount: retrying

Solution
Use a supported version number (Version 2, 3, or 4).

6.8.5 Mount command hangs - no system response
The mount command seems to hang without any message:

mount -o vers=4,sec=krb5 nfs402:/ /nfs

Problem determination steps
Check the syslog entries and see if there are recently logged errors:

Example 6-21 Syslog entries showing output from gssd

Jul 30 20:24:50 localhost unix: kgss_init_sec_context returned
GSS_S_UNAVAILABLE
220 Securing NFS in AIX

Jul 30 20:25:20 localhost unix: kgss_init_sec_context returned
GSS_S_UNAVAILABLE

Solution
Restart the gssd subsystem or make sure it is running.

6.8.6 Mount with sec=krb5: “vmount: The file access permissions do
not allow the specified action”

Running the following mount command returns the error shown in Example 6-22:

mount -o vers=4,sec=krb5 nfs404:/ /nfs

Example 6-22 Error returned by the mount command

mount: 1831-008 giving up on:
nfs404:/
vmount: The file access permissions do not allow the specified action.

This problem has multiple fail reasons even though this command works:

mount -o vers=4 nfs404:/ /nfs

Failure mode 1: problem determination steps
Check the syslog for errors similar to Example 6-23 and Example 6-24.

Example 6-23 Syslog entry on NFS V4 server if mounted from server

Jul 30 11:53:27 nfs404 unix: kgss_init_sec_context returned GSS_S_FAILURE
KRB5_FCC_NOFILE

Example 6-24 Syslog entry on NFS V4 server if mounted from client

Jul 29 17:17:52 nfs404 syslog: accept_context failed, major=d0000,
minor=96c73ae3
Jul 29 17:17:52 nfs404 unix: kgss_accept_sec_context failed: GSS_S_FAILURE
FFFFFFFF
Jul 30 11:13:48 nfs404 syslog: nfsrgyd: Unable to map realm
(itsc.austin.ibm.com) to a domain

Solution to failure mode 1
The /etc/nfs/realm.map file has been created incorrectly. Use the chnfsrtd
command to recreate the file. This is the incorrect syntax for /etc/nfs/realm.map:

realm.map realm2.ibm.com itsc.austin.ibm.com
 Chapter 6. Problem determination 221

This is the correct syntax:

realm2.ibm.com itsc.austin.ibm.com

Failure mode 2: problem determination steps
Example 6-25 Errors from syslog output

Jul 30 16:02:45 nfs407 gssd[11968]: The user option is different from the
address family passed into the API.
Jul 30 16:02:45 nfs407 gssd[11968]: The user option is different from the
address family passed into the API.
Jul 30 16:02:45 nfs407 syslog: init_context failed, major=d0000, minor=96c73a07
Jul 30 16:02:45 nfs407 unix: kgss_init_sec_context returned GSS_S_FAILURE
KRB5KDC_ERR_S_PRINCIPAL_UNKNOWN

Solutions to failure mode 2
1.) Incorrect hostkey entry

There is an incorrect entry in the /etc/nfs/hostkey file for the NFS V4 server
name. Use nfshostkey -l to check this:

Example 6-26 Using the nfshostkey command

nfshostkey -l
nfs/nfs402.itsc.austin.ibm.com
/etc/krb5/krb5.keytab
#

The correct entry should be:

nfs/nfs407.itsc.austin.ibm.com

Carry out the following steps to resolve the problem:

a. Run the following command:

nfshostkey -p nfs/nfs407.itsc.austin.ibm.com -f\ /etc/krb5/krb5.keytab

b. Stop and restart NFS.

2.) Incorrect nfshostmap entry
There is an incorrect entry in the /etc/nfs/princmap file. Use the nfshostmap -l
command to check this:

nfs407 nfs407.itsc.austin.ibm.com

This entry is incorrect. We do not have to map this host, as nfs407 does not have
a second interface. Carry out the following steps to resolve the problem:

1. Run the following command:

nfshostmap -d nfs407
222 Securing NFS in AIX

2. Stop and restart the gssd subsystem:

stopsrc -s gssd
startsrc -s gssd

3.) Incorrect credentials
The credentials within the NAS credential cache file
/var/krb5/security/creds/krb5cc_0 are incorrect. Carry out the following steps to
resolve the problem:

1. Unset the KRB5CCNAME variable with the following command:

unset KRB5CCNAME

2. To check the credentials available to the gssd daemon, run:

klist

3. Stop and restart the gssd subsystem:

stopsrc -s gssd
startsrc -s gssd

Failure mode 3: problem determination steps
The syslog file gives the entries shown in Example 6-27.

Example 6-27 KRB5_NO_TKT_IN_RLM in syslog file

Aug 16 11:14:50 nfs406 su: from root to sally at /dev/pts/0
Aug 16 11:14:50 nfs406 syslog: init_context failed, major=d0000, minor=96c73ab9
Aug 16 11:14:50 nfs406 unix: kgss_init_sec_context returned GSS_S_FAILURE
KRB5_NO_TKT_IN_RLM

Solution to failure mode 3
The client does not belong to the same Kerberos realm as the NFS V4 server.
Thus you have to add the NFS domain to the /etc/realm.map file using the
chnfsrtd or smitty chnfsrtd commands. After the change, this error will not be
logged any more.

6.8.7 Mount with sec=krb5: “RPC: 1832-016 Unknown host...”
Running the following mount command returns the error shown in Example 6-28
on page 224, even though the NFS domain is set on the system:

mount -o vers=4,sec=krb5 nfs403:/ /nfs

Restriction: As we write this book, we have found that the gssd takes
approximately two minutes from the stop-and-start operation to update all
local changes.
 Chapter 6. Problem determination 223

Example 6-28 Unknown host error returned from the mount command

mount -o vers=4,sec=krb5 nfs403:/ /nfs
RPC: 1832-016 Unknown host
Verify the NFS local domain has been set, and the nfsrgyd process is running
#
#chnfsdom
Current local domain: itsc.austin.ibm.com
#
lssrc -s nfsrgyd
Subsystem Group PID Status
 nfsrgyd nfs 16530 active
#

Problem determination steps
This message seems to indicate a local DNS/HOSTNAME resolution problem:

RPC: 1832-016 Unknown host

All other messages can be ignored at this time.

The local gssd must be able resolve the NFS V4 server as well as the KDC
server, so we check whether the server names can be found using the host
command as shown in Example 6-29.

Example 6-29 NFS V4 host IP / DNS test

host nfs403
nfs403.itsc.austin.ibm.com is 9.3.5.173
#
ping -c 1 nfs403
PING nfs403.itsc.austin.ibm.com (9.3.5.173): 56 data bytes
64 bytes from 9.3.5.173: icmp_seq=0 ttl=255 time=0 ms

--- nfs403.itsc.austin.ibm.com ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0/0/0 ms
#

This test passed, so the NFS server can be resolved. Next, we test whether the
KDC server is known and resolvable (Example 6-30).

Example 6-30 Test to see whether the KDC server is known and accessible

grep ":88" /etc/krb5/krb5.conf
 kdc = nfs409.kdc.itsc.austin.ibm.com:88
#
host nfs409.kdc.itsc.austin.ibm.com
nfs409.kdc.itsc.austin.ibm.com is 9.3.4.71
224 Securing NFS in AIX

host nfs409
nfs409.itsc.austin.ibm.com is 9.3.5.179
tn nfs409 88
Trying...
^C
tn nfs409.kdc.itsc.austin.ibm.com 88
Trying...
Connected to nfs409.kdc.itsc.austin.ibm.com.
Escape character is '^T'.
^CConnection closed.

This test passed as well. We finally check the local host name and loopback
interface using the hostname and rcpinfo commands (Example 6-31).

Example 6-31 Checking the local hostname and loopback interface

hostname
nfs405.itsc.austin.ibm.com
#
root@nfs405 [scripts] host nfs405
nfs405.itsc.austin.ibm.com is 9.3.5.175
root@nfs405 [scripts] ping -c1 nfs405
PING nfs405.itsc.austin.ibm.com (9.3.5.175): 56 data bytes
64 bytes from 9.3.5.175: icmp_seq=0 ttl=255 time=0 ms

--- nfs405.itsc.austin.ibm.com ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0/0/0 ms
root@nfs405 [scripts]
#
root@nfs405 [scripts] rpcinfo -p
 program vers proto port service
 100000 4 udp 111 portmapper
 100000 3 udp 111 portmapper
 100000 2 udp 111 portmapper
 100000 4 tcp 111 portmapper
 100000 3 tcp 111 portmapper
 100000 2 tcp 111 portmapper
 100003 2 udp 2049 nfs
 100003 3 udp 2049 nfs
 100003 2 tcp 2049 nfs
 100003 3 tcp 2049 nfs
 100003 4 tcp 2049 nfs
 200006 1 udp 2049
 200006 4 udp 2049
 200006 1 tcp 2049
 200006 4 tcp 2049
 400003 1 udp 33843
 Chapter 6. Problem determination 225

 100005 1 tcp 32787 mountd
 100005 1 udp 33847 mountd

 100005 2 udp 33847 mountd
 100005 3 udp 33847 mountd
 400234 1 udp 33849
 100024 1 tcp 32788 status
 100024 1 udp 33851 status
 100133 1 tcp 32788
 100133 1 udp 33851
 200001 1 tcp 32788
 200001 1 udp 33851
 200001 2 tcp 32788
 200001 2 udp 33851
 400005 1 udp 33848
 100021 1 udp 33882 nlockmgr
 100021 2 udp 33882 nlockmgr
 100021 3 udp 33882 nlockmgr
 100021 4 udp 33882 nlockmgr
 100021 1 tcp 32789 nlockmgr
 100021 2 tcp 32789 nlockmgr
 100021 3 tcp 32789 nlockmgr
 100021 4 tcp 32789 nlockmgr
#
#root@nfs405 [scripts] host loopback
host: name loopback NOT FOUND
#

Solution
The system’s loopback interface name resolution failed (see RFC1537 for
details). This indicates an incorrect entry on the DNS server or /etc/hosts setup.
Correcting the system loopback entry resolves the problem and the host
command returns the correct entry, shown in Example 6-32.

Example 6-32 Correct entry returned by the host command

#root@nfs405 [scripts] host loopback
loopback is 127.0.0.1, Aliases: localhost
root@nfs405 [scripts] mount -o vers=4,sec=krb5 nfs402:/ /nfs
#

6.8.8 File and directory access: cd, ls, etc. return “permission denied”
A NFS client cannot access the mounted files and directories. Several
commands, such as cd or ls, return a permission-denied message
(Example 6-33 on page 227).
226 Securing NFS in AIX

Example 6-33 Permission denied messages from several commands

nfs4cl showfs

Server Remote Path fsid Local Path
-------- --------------- --------------- ---------------
nfs403 /exports/home 10:12 /nfs
#
cd /nfs
ksh: /nfs: permission denied
#
ls -l /nfs
/nfs: No permission

Failure mode 1: problem determination steps
1. Check the syslog entries on the client, as shown in Example 6-34.

Example 6-34 Syslog entries seen as a result of the permissions problem

Aug 6 09:17:30 nfs403 syslog: init_context failed, major=d0000, minor=96c73ab9
Aug 6 09:17:30 nfs403 unix: kgss_init_sec_context returned GSS_S_FAILURE
KRB5_NO_TKT_IN_RLM

These errors indicate that no valid ticket has been issued to the user.

2. You can also check the ticket status by running the klist command.

Example 6-35 Checking the ticket status using klist

#date
Tue Aug 10 15:00:52 CDT 2004
#
#klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: sally@REALM2.IBM.COM

Valid starting Expires Service principal
08/02/04 11:14:12 08/03/04 11:14:11 krbtgt/REALM2.IBM.COM@REALM2.IBM.COM
08/02/04 11:14:19 08/03/04 11:14:11
nfs/nfs402.itsc.austin.ibm.com@REALM2.IBM.COM

Solution to failure mode 1
Request a new ticket using the kinit command to resolve the problem
(Example 6-36 on page 228).
 Chapter 6. Problem determination 227

Example 6-36 Requesting a new ticket for the user using the kinit command

kinit sally
Password for sally@KDC.ITSC.AUSTIN.IBM.COM:
#
klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: sally@KDC.ITSC.AUSTIN.IBM.COM

Valid starting Expires Service principal
08/06/04 09:27:06 08/06/04 19:27:13
krbtgt/KDC.ITSC.AUSTIN.IBM.COM@KDC.ITSC.AUSTIN.IBM.COM
 Renew until 08/07/04 09:27:06
#
cd /nfs
#
ls
bob joe lost+found mary sally
#

Failure mode 2: problem determination steps
Check the syslog log file and check whether you can see an entry similar to the
one in Example 6-37.

Example 6-37 Error showing the gssd being unable to access a valid ticket cache

Aug 10 12:25:50 nfs404 unix: kgss_init_sec_context returned GSS_S_FAILURE
KRB5_FCC_NOFILE

The error indicates that the gssd process is unable to access a valid ticket cache
file for the principal.

Check to see whether the KRB5CCNAME environment variable has been set.

Example 6-38 Has the KRB5CCNAME environment variable been set?

$ set |grep -i krb
AUTHSTATE=KRB5LDAP
KRB5CCNAME=FILE:/var/krb5/security/creds/krb5cc_sally@REALM1.IBM.COM_6023
PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin:/usr/krb5/bin/:/usr/ja
va14/jre/bin:/usr/java14/bin:/usr/java131/jre/bin:/usr/java131/bin

Solution to failure mode 2
Change the user environment by unsetting the KRB5CCNAME environment
variable and obtaining a new ticket, as shown in Example 6-39 on page 229.
228 Securing NFS in AIX

Example 6-39 Unsetting KRB5CCNAME and obtaining a new ticket

$ unset KRB5CCNAME
$
$ klist
Unable to get cache name (ticket cache: /var/krb5/security/creds/krb5cc_6023).
 Status 0x96c73ac3 - No credentials cache found.
$
$ kinit sally
Password for sally@REALM1.IBM.COM:
$
$ cd /nfs
$

6.8.9 File and directory access: file ownership is “nobody:nobody”
A newly created file has ownership nobody:nobody instead of the format
userame:groupname. The server and client are in the same NFS domain, and
the identity of the user is valid. Example 6-40 shows the problem.

Example 6-40 The nobody:nobody ownership issue

tn nfs406
Trying...
Connected to nfs406.itsc.austin.ibm.com.
Escape character is '^T'.
AIX Version 5
(C) Copyrights by IBM and by others 1982, 2004.
login: sally
sally's Password:
$
$ id
uid=6023(sally) gid=1(staff) groups=1400(eng)
$
$ klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_6023
Default principal: sally@REALM1.IBM.COM

Valid starting Expires Service principal
08/11/04 11:06:29 08/12/04 11:06:23 krbtgt/REALM1.IBM.COM@REALM1.IBM.COM
08/11/04 11:06:34 08/12/04 11:06:23
nfs/nfs404.itsc.austin.ibm.com@REALM1.IBM.COM
$
$ mount
 node mounted mounted over vfs date options
-------- --------------- --------------- ------ ------------ ---------------
nfs404 / /nfs nfs4 Aug 11 10:53 vers=4,sec=krb5
$ cd /nfs/tmp
 Chapter 6. Problem determination 229

$
$ touch thisisatest
$
$ ls -l thisisatest
-rw-r--r-- 1 nobody nobody 0 Aug 11 10:54 thisisatest
$

Problem determination steps
On the NFS server, the syslog log file gives entries as shown in Example 6-41.

Example 6-41 NFS V4 registry daemon entries in the syslog log file

Aug 11 11:09:22 nfs404 syslog: nfsrgyd: Unable to map local user (sally) to a
foreign user
Aug 11 11:09:22 nfs404 syslog: nfsrgyd: Unable to map local group (staff) to a
foreign group

Solution
The realm to NFS domain mapping in the /etc/nfs/realm.map file is incorrect.
Carry out the following steps to resolve the problem:

1. Change the mapping using the chnfsrtd command to make the change from:

realm1.ibm.com nfstest.itsc.austin.ibm.com

to

realm1.ibm.com itsc.austin.ibm.com

2. Stop and start the nfsrgyd on NFS server nfs404:

stopsrc -s nfsrgyd
startsrc -s nfsrgyd

Example 6-42 shows the test we carried out to prove that the issue had been
resolved.

Example 6-42 The resolved issue after steps 1 and 2 have been carried out

$ cd /nfs
$
$ touch thisisatest2
$
$ ls -l thisisatest2
-rw-r--r-- 1 sally staff 0 Aug 11 11:08 thisisatest2
$

230 Securing NFS in AIX

6.8.10 NAS problem: kadmin: “Unable to initialize kadmin interface”
After installing the NAS file sets and configuration of the NAS client, kadmin no
longer works and results in the error shown in Example 6-43.

Example 6-43 kadmin initialization error

/usr/krb5/sbin/kadmin
Authenticating as principal root/admin@REALM1.IBM.COM with password.
Unable to initialize kadmin interface.
 Status 0x29c2500 - Operation failed for unspecified reason.

Problem determination steps

See whether you can log on to Kerberos using the principal admin/admin.

Example 6-44 kinit verification with principal admin/admin

kinit admin/admin
Password for admin/admin@REALM1.IBM.COM:
#
klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: admin/admin@REALM1.IBM.COM

Valid starting Expires Service principal
08/12/04 10:20:04 08/13/04 10:20:01 krbtgt/REALM1.IBM.COM@REALM1.IBM.COM

Solution

The problem is caused by the fact that principal root/admin is not known as an
administrative principal. So this message is normal and we recommend that you
use the kadmin command with the -p admin/admin option.

Example 6-45 kadmin verification with -p option

/usr/krb5/sbin/kadmin -p admin/admin
Authenticating as principal admin/admin with password.
Password for admin/admin@REALM1.IBM.COM:
kadmin:
 Chapter 6. Problem determination 231

6.9 GSS-API error codes
Each GSS-API function returns two status codes: a major status code and a
minor status code. Major status codes indicate behavior of the GSS-API itself.

For example, if an application attempts to transmit a message after a security
context has expired, GSS-API returns a major status code of
GSS_S_CONTEXT_EXPIRED. Major status codes are listed among the
GSS-API status codes.

Minor status codes are returned by the underlying security mechanisms that are
supported by a given implementation of GSS-API. Every GSS-API function takes
as the first argument a minor_status or minor_stat parameter. An application can
examine this parameter when the function returns, successfully or not, to see the
status that is returned by the underlying mechanism.

Example 6-46 GSS-API syslog entries

Aug 16 11:14:50 nfs406 syslog: init_context failed, major=d0000, minor=96c73ab9
Aug 16 11:14:50 nfs406 unix: kgss_init_sec_context returned GSS_S_FAILURE
KRB5_NO_TKT_IN_RLM

In Example 6-46, the following important information is provided:

� The GSS subroutine called kgss_init_sec_context returned with GSS-API:

– Major status: GSS_S_FAILURE

– Minor status: KRB5_NO_TKT_IN_RLM

The following two sections provide a quick messages reference. A more detailed
list can be found in IBM Network Authentication Service Version 1.4 for AIX,
Linux, Solaris and Windows Application Development Reference, available in the
krb5.doc.en_US file set.

6.9.1 Major GSS-API error codes
The following table lists calling errors returned by GSS-API.

Table 6-3 GSS-API routine failures

Error code Description

GSS_S_BAD_MECH An unsupported mechanism was
requested.

GSS_S_BAD_NAME An invalid name was supplied.
232 Securing NFS in AIX

GSS_S_BAD_NAMETYPE A supplied name was of an unsupported
type.

GSS_S_BAD_BINDINGS Incorrect channel bindings were supplied.

GSS_S_BAD_STATUS An invalid status code was supplied.

GSS_S_BAD_SIG A token had an invalid signature.

GSS_S_NO_CRED No credentials were supplied, or the
credentials were unavailable or
inaccessible.

GSS_S_NO_CONTEXT No context has been established.

GSS_S_DEFECTIVE_TOKEN A token was invalid.

GSS_S_DEFECTIVE_CREDENTIAL A credential was invalid.

GSS_S_CREDENTIALS_EXPIRED The referenced credentials have expired.

GSS_S_CONTEXT_EXPIRED The context has expired.

GSS_S_FAILURE Miscellaneous failure. The underlying
mechanism detected an error for which no
specific GSS–API status code is defined.
The mechanism-specific status code
(minor-status code) provides more details
about the error.

GSS_S_BAD_QOP The quality-of-protection requested could
not be provided.

GSS_S_UNAUTHORIZED The operation is forbidden by local
security policy.

GSS_S_UNAVAILABLE The operation or option is unavailable.

GSS_S_DUPLICATE_ELEMENT The requested credential element already
exists.

GSS_S_NAME_NOT_MN The provided name was not a mechanism
name (MN).

Error code Description
 Chapter 6. Problem determination 233

6.9.2 Kerberos v5 status codes
The following tables list the status messages that can be returned by Kerberos
V5 in the minor_status argument. For more about GSS-API status codes, see
GSS-API Status Codes.

Messages returned in Kerberos v5 for KRB5KDC status codes
Table 6-4 Kerberos V5 KRB5KDC status codes

Minor status code Description

KRB5KDC_ERR_BAD_PVNO Requested protocol version not
supported.

KRB5KDC_ERR_BADOPTION KDC cannot fulfill requested option.

KRB5KDC_ERR_C_OLD_MAST_KVNO Client’s key is encrypted in an old
master key.

KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN Client not found in Kerberos
database.

KRB5KDC_ERR_CANNOT_POSTDATE Ticket is ineligible for postdating.

KRB5KDC_ERR_CLIENT_NOTYET Client not yet valid; try again later.

KRB5KDC_ERR_CLIENT_REVOKED Client’s credentials have been
revoked.

KRB5KDC_ERR_ETYPE_NOSUPP KDC has no support for encryption
type.

KRB5KDC_ERR_KEY_EXP Password has expired.

KRB5KDC_ERR_NAME_EXP Client’s entry in database has
expired.

KRB5KDC_ERR_NEVER_VALID Requested effective lifetime is
negative or too short.

KRB5KDC_ERR_NONE No error.

KRB5KDC_ERR_NULL_KEY Client or server has a null key.

KRB5KDC_ERR_PADATA_TYPE_NOSUPP KDC has no support for padata type.

KRB5KDC_ERR_POLICY KDC policy rejects request.

KRB5KDC_ERR_PREAUTH_FAILED Preauthentication failed.

KRB5KDC_ERR_PREAUTH_REQUIRED Additional preauthentication
required.
234 Securing NFS in AIX

Messages returned in Kerberos V5 for KRB5KRB status code
Table 6-5 Kerberos V5 KRB5KRB status codes

KRB5KDC_ERR_PRINCIPAL_NOT_UNIQUE Principal has multiple entries in
Kerberos database.

KRB5KDC_ERR_S_OLD_MAST_KVNO Server’s key is encrypted in an old
master key.

KRB5KDC_ERR_S_PRINCIPAL_UNKNOWN Server not found in Kerberos
database.

KRB5KDC_ERR_SERVER_NOMATCH Requested server and ticket do not
match.

KRB5KDC_ERR_SERVICE_EXP Server’s entry in database has
expired.

KRB5KDC_ERR_SERVICE_NOTYET Server not yet valid; try again later.

KRB5KDC_ERR_SERVICE_REVOKED. Credentials for server have been
revoked.

KRB5KDC_ERR_SUMTYPE_NOSUPP KDC has no support for checksum
type.

KRB5KDC_ERR_TGT_REVOKED TGT has been revoked.

KRB5KDC_ERR_TRTYPE_NOSUPP KDC has no support for transited
type.

Minor status codes Description

KRB5KRB_AP_ERR_BAD_INTEGRITY Decrypt integrity check failed.

KRB5KRB_AP_ERR_BADADDR Incorrect net address.

KRB5KRB_AP_ERR_BADDIRECTION Incorrect message direction.

KRB5KRB_AP_ERR_BADKEYVER. Key version is not available.

KRB5KRB_AP_ERR_BADMATCH Ticket and authenticator do not
match.

KRB5KRB_AP_ERR_BADORDER Message out of order.

KRB5KRB_AP_ERR_BADSEQ Incorrect sequence number in
message.

KRB5KRB_AP_ERR_BADVERSION Protocol version mismatch.

Minor status code Description
 Chapter 6. Problem determination 235

Messages returned in Kerberos for KRB5 status codes
Table 6-6 Kerberos V5 general KRB5 status codes

KRB5KRB_AP_ERR_ILL_CR_TKT Illegal cross-realm ticket.

KRB5KRB_AP_ERR_INAPP_CKSUM Inappropriate type of checksum in
message.

KRB5KRB_AP_ERR_METHOD Alternative authentication method
required.

KRB5KRB_AP_ERR_MODIFIED Message stream modified.

KRB5KRB_AP_ERR_MSG_TYPE Invalid message type.

KRB5KRB_AP_ERR_MUT_FAIL Mutual authentication failed.

KRB5KRB_AP_ERR_NOKEY Service key not available.

KRB5KRB_AP_ERR_NOT_US The ticket is not for us.

KRB5KRB_AP_ERR_REPEAT Request is a replay.

KRB5KRB_AP_ERR_SKEW Clock skew too great.

KRB5KRB_AP_ERR_TKT_EXPIRED Ticket expired.

KRB5KRB_AP_ERR_TKT_INVALID Ticket has invalid flag set.

KRB5KRB_AP_ERR_TKT_NYV Ticket not yet valid.

KRB5KRB_AP_ERR_V4_REPLY Initial ticket response appears to be
Version 4 error.

KRB5KRB_AP_WRONG_PRINC Wrong principal in request.

KRB5KRB_ERR_FIELD_TOOLONG Field is too long for this
implementation.

KRB5KRB_ERR_GENERIC Generic error.

Minor codes Description

KRB5_BAD_ENCTYPE Bad encryption type.

KRB5_BAD_KEYSIZE Key size is incompatible with
encryption type.

KRB5_BAD_MSIZE Message size is incompatible with
encryption type.

Minor status codes Description
236 Securing NFS in AIX

KRB5_BADMSGTYPE Invalid message type specified for
encoding.

KRB5_CC_BADNAME Credential cache name malformed.

KRB5_CC_END End of credential cache reached.

KRB5_CC_FORMAT Bad format in credentials cache.

KRB5_CC_IO Credentials cache I/O operation
failed.

KRB5_CC_NOMEM No more memory to allocate (in
credentials cache code).

KRB5_CC_NOTFOUND Matching credential not found.

KRB5_CC_TYPE_EXISTS Credentials cache type is already
registered.

KRB5_CC_UNKNOWN_TYPE Unknown credential cache type.

KRB5_CC_WRITE Error writing to credentials cache file.

KRB5_CCACHE_BADVNO Unsupported credentials cache
format version number.

KRB5_CONF_NOT_CONFIGURED Kerberos /etc/krb5/krb5.conf
configuration file not configured.

KRB5_CONFIG_BADFORMAT Improper format of Kerberos
/etc/krb5/krb5 configuration file.

KRB5_CONFIG_CANTOPEN Cannot open or find Kerberos
/etc/krb5/krb5 configuration file.

KRB5_CONFIG_NODEFREALM Configuration file /etc/krb5/krb5.conf
does not specify default realm.

KRB5_CONFIG_NOTENUFSPACE Insufficient space to return complete
information.

KRB5_ERR_BAD_HOSTNAME Host name cannot be canonicalized.

KRB5_ERR_HOST_REALM_UNKNOWN Cannot determine realm for host.

KRB5_FCC_INTERNAL Internal file credentials cache error.

KRB5_FCC_NOFILE No credentials cache file found.

KRB5_FCC_PERM Credentials cache file permissions
incorrect.

Minor codes Description
 Chapter 6. Problem determination 237

KRB5_FWD_BAD_PRINCIPAL Bad principal name while trying to
forward credentials.

KRB5_GET_IN_TKT_LOOP Looping detected in krb5_get_in_tkt.

KRB5_IN_TKT_REALM_MISMATCH Client/server realm mismatch in
initial ticket request.

KRB5_KDC_UNREACH Cannot contact any KDC for
requested realm.

KRB5_KDCREP_MODIFIED KDC reply did not match
expectations.

KRB5_KDCREP_SKEW Clock skew too great in KDC reply.

KRB5_KEYTAB_BADVNO Unsupported key table format
version number.

KRB5_KT_BADNAME Key table name malformed.

KRB5_KT_END End of key table reached.

KRB5_KT_IOERR Error writing to key table.

KRB5_KT_KVNONOTFOUND Key version number for principal in
key table is incorrect.

KRB5_KT_NAME_TOOLONG Keytab name too long.

KRB5_KT_NOTFOUND Key table entry not found.

KRB5_KT_NOWRITE Cannot write to specified key table.

KRB5_KT_TYPE_EXISTS Key table type is already registered.

KRB5_KT_UNKNOWN_TYPE Unknown key table type.

KRB5_MUTUAL_FAILED Mutual authentication failed.

KRB5_NO_2ND_TKT Request missing second ticket.

KRB5_NO_LOCALNAME No local name found for principal
name.

KRB5_NO_TKT_IN_RLM Cannot find ticket for requested
realm.

KRB5_NO_TKT_SUPPLIED Request did not supply a ticket.

KRB5_NOCREDS_SUPPLIED No credentials supplied to library
routine.

Minor codes Description
238 Securing NFS in AIX

KRB5_PREAUTH_BAD_TYPE Unsupported preauthentication type.

KRB5_PREAUTH_FAILED Generic preauthentication failure.

KRB5_PREAUTH_NO_KEY Required preauthentication key not
supplied.

KRB5_PRINC_NOMATCH Requested principal and ticket do not
match.

KRB5_PROG_ATYPE_NOSUPP Program lacks support for address
type.

KRB5_PROG_ETYPE_NOSUPP Program lacks support for encryption
type.

KRB5_PROG_KEYTYPE_NOSUPP Program lacks support for key type.

KRB5_PROG_SUMTYPE_NOSUPP Program lacks support for checksum
type.

KRB5_RC_IO_EOF End-of-file on replay cache I/O.

KRB5_RC_IO_MALLOC No more memory to allocate (in
replay cache I/O code).

KRB5_RC_IO_PERM Permission denied in replay cache
code.

KRB5_RC_MALLOC No more memory to allocate (in
replay cache code).

KRB5_RC_PARSE Replay cache name parse/format
error.

KRB5_RC_REQUIRED Message replay detection requires
rcache parameter.

KRB5_RC_TYPE_EXISTS Replay cache type is already
registered.

KRB5_RC_TYPE_NOTFOUND Replay cache type is unknown.

KRB5_RCACHE_BADVNO Unsupported replay cache format
version number.

KRB5_REALM_CANT_RESOLVE Cannot resolve KDC for requested
realm.

KRB5_REALM_UNKNOWN Cannot find KDC for requested
realm.

Minor codes Description
 Chapter 6. Problem determination 239

Messages returned in Kerberos v5 for KRB5DES status codes
Table 6-7 Kerberos V5 KRB5DES status codes

KRB5_SAM_UNSUPPORTED Bad SAM flags in
obtain_sam_padata.

KRB5_SENDAUTH_BADAPPLVERS Bad application version was sent (by
sendauth).

KRB5_SENDAUTH_BADAUTHVERS Bad sendauth version was sent.

KRB5_SENDAUTH_BADRESPONSE Bad response (during sendauth
exchange).

KRB5_SENDAUTH_REJECTED Server rejected authentication
(during sendauth exchange).

KRB5_SERVICE_UNKNOWN Kerberos service unknown.

KRB5_SNAME_UNSUPP_NAMETYPE Conversion to service principal
undefined for name type.

KRB5_TKT_NOT_FORWARDABLE Requesting ticket cannot get
forwardable tickets.

KRB5_WRONG_ETYPE Requested encryption type not used
in message.

Minor codes Description

KRB5DES_BAD_KEYPAR DES key has bad parity.

KRB5DES_WEAK_KEY DES key is a weak key.

Minor codes Description
240 Securing NFS in AIX

Part 3 Appendixes

This part includes the following sections:

� Appendix A, “Kerberos” on page 243

� Appendix B, “Sample scripts, files, and output” on page 255

� Appendix C, “AIX 5.3 NFS quick reference” on page 287

Part 3
© Copyright IBM Corp. 2004. All rights reserved. 241

242 Securing NFS in AIX

Appendix A. Kerberos

This appendix describes the Kerberos authentication method. It also provides a
list of references that contain more in-depth information about Kerberos.

The appendix contains the following sections:

� Overview

� Kerberos keys and initial setup

� Authenticating to the Kerberos server

� Authenticating to an application server

� Kerberos terminology

� Where to find more information about Kerberos

The first four sections are reprinted from the IBM Redbook The RS/6000 SP
Inside Out, SG24-5374.

A

© Copyright IBM Corp. 2004. All rights reserved. 243

Overview

Kerberos is a trusted third-party authentication system for use on physically
insecure networks. It enables entities communicating over the network to prove
their identity to each other while preventing eavesdropping or replay attacks.
Figure 6-2 shows the three parties involved in the authentication. The Kerberos
system was designed and developed in the 1980s by the Massachusetts Institute
of Technology (MIT) as part of the Athena project. The current version of
Kerberos is Version 5, which is standardized in RFC 1510, The Kerberos
Network Authentication Service (V5).

Figure 6-2 Partners in a third-party authentication

Kerberos provides two services to Kerberos principals (users or services): an
authentication service (AS) and a ticket-granting service (TGS). Principals can
prove their identity to the AS with a single sign-on and get a ticket-granting ticket
(TGT) back from the AS. When one authenticated principal (the client) wants to

Kerberos: Also spelled Cerberus, the watchdog of Hades, whose duty was to
guard the entrance (against whom or what does not clearly appear)… It is
known to have had three heads.
- Ambrose Bierce, The Enlarged Devil's Dictionary
244 Securing NFS in AIX

use the services of a second authenticated principal (the server), it can get a
service ticket for this service by presenting its TGT to the Kerberos TGS. The
service ticket is then sent from the client to the server, which can use it to verify
the client’s identity.

This section describes the protocol that Kerberos uses to provide these services,
independent of a specific implementation. A more detailed rationale for the
Kerberos design can be found in the MIT article Designing an Authentication
System: a Dialogue in Four Scenes, which is available from:

http://web.mit.edu/kerberos/www/dialogue.html

Kerberos keys and initial setup
To encrypt the messages that are sent over the network, Kerberos uses a
symmetric encryption method, normally the Data Encryption Standard (DES).
This means that the same key is used to encrypt and decrypt a message, and
consequently the two partners of a communication must share this key if they
want to use encryption. The key is called a secret key for obvious reasons: it
must be kept secret by the two parties; otherwise the encryption will not be
effective.

This approach must be distinguished from public key cryptography, which is an
asymmetric encryption method. There, two keys are used: a public key and a
private key. A message encrypted with one of the keys can only be decrypted by
the other key, not by the one that encrypted it. The public keys do not need to be
kept secret (hence the name “public”), and a private key is known only to its
owner. (It is not even to the communication partner as in the case of symmetric
cryptography.) This has the advantage that no key must be transferred between
the partners prior to the first use of encrypted messages.

With symmetric encryption, principals must provide a password to the Kerberos
server before they can use the Kerberos services. The Kerberos server then
encrypts it and stores the resulting key in its database. This key is the shared
information that the Kerberos server and the principal can use to encrypt and
decrypt the messages they send each other. Initially, two principals who want to
communicate with each other do not share a key, and so cannot encrypt their
messages. But since the Kerberos server knows the keys of all the principals, it is
called a trusted third party and can securely provide a common session key to
the two parties.

Obviously, the initial passwords have to be entered securely, if possible at the
console of the Kerberos server machine. They might also be generated by the
Kerberos server (especially if the principal is a host or service). In that case they
must be securely transferred to the principal that stores (or remembers) them.
 Appendix A. Kerberos 245

http://web.mit.edu/kerberos/www/dialogue.html

Authenticating to the Kerberos server
If a principal (typically a user) wants to use Kerberos services (for example,
because it wants to use an application service that requires Kerberos
authentication), it first has to prove its identity to the Kerberos server. This is
done in the following way:

A command to sign on to the Kerberos system is issued on the application client,
typically kinit. This command sends an authentication request to the Kerberos
server, as shown in Figure A-1. This contains the type of service that is
requested (here, the client wants to get service from the ticket-granting service),
the client’s (principal’s) name, and the IP address of the client machine. This
request is sent in plain text. Note that the principal’s password is not sent in this
packet, so there is no security exposure in sending the request in plain text.

Figure A-1 Client's authentication request

The request is processed by the authentication server. Using the client’s name, it
looks up the corresponding key in the Kerberos database. It also generates a
random session key to be shared by the client and the TGS, which will be used to
encrypt all future communication of the client with the TGS. With this information,
the AS constructs the ticket-granting ticket for the client, which (as with all
Kerberos tickets) contains six parts:

1. The service for which the ticket is good (here, the TGS)
2. The client’s (principal’s) name
3. The client machine’s IP address
4. A timestamp showing when the ticket was issued
5. The ticket lifetime (configurable in K5)
6. The session key for client/TGS communications

This ticket is encrypted with the secret key of the TGS, so only the TGS can
decrypt it. Because the client needs to know the session key, the AS sends back
a reply that contains both the TGT and the session key, all of which is encrypted
by the client’s secret key. This is shown in Figure A-2 on page 247.
246 Securing NFS in AIX

Figure A-2 Authentication server's reply: TGT

Now the sign-on command prompts the user for the password and generates a
DES key from the password using the same algorithm as the Kerberos server. It
then attempts to decrypt the reply message with that key. If this succeeds, the
password has matched the one used to create the user’s key in the Kerberos
database, and the user has authenticated herself. If the decryption fails, the
sign-on is rejected and the reply message is useless. Assuming success, the
client now has the encrypted TGT and the session key for use with the TGS, and
stores them both in a safe place. Note that the authentication has been done
locally on the client machine, and the password has not been transferred over the
network.

Authenticating to an application server
If the client now wants to access an application service that requires Kerberos
authentication, it must get a service ticket from the TGS. The TGT that was
obtained during the Kerberos sign-on can be used to authenticate the client to
the TGS; there is no need to type in a password each time a service ticket is
requested.
 Appendix A. Kerberos 247

If the client sent only the (encrypted) TGT to the Kerberos TGS, this might be
captured and replayed by an intruder who has impersonated the client machine.
To protect the protocol against such attacks, the client also generates an
authenticator which consists of three parts:

1. The client’s (principal’s) name
2. The client machine’s IP address
3. A timestamp showing when the authenticator was created

The authenticator is encrypted with the session key that the client shares with the
TGS. The client then sends a request to the TGS consisting of the name of the
service for which a ticket is requested, the encrypted TGT, and the encrypted
authenticator. This is shown in Figure A-3.

Figure A-3 Client's service ticket request

The TGS can decrypt the TGT because it is encrypted with its own secret key. In
that ticket, it finds the session key to share with the client. It uses this session key
to decrypt the authenticator, and can then compare the client’s name and
address in the TGT and the authenticator.
248 Securing NFS in AIX

If the timestamp that the TGS finds in the authenticator differs from the current
time by more than a prescribed difference (typically 5 minutes), a ticket replay
attack is assumed and the request is discarded.

If all checks pass, the TGS generates a service ticket for the service indicated in
the client’s request. The structure of this service ticket is identical to the TGT
described in “Authenticating to the Kerberos server” on page 246. The content
differs in the service field (which now indicates the application service rather than
the TGS), the timestamp, and the session key. The TGS generates a new,
random key that the client and application service will share to encrypt their
communications. One copy is put into the service ticket (for the server), and
another copy is added to the reply package for the client since the client cannot
decrypt the service ticket. The service ticket is encrypted with the secret key of
the service, and the whole package is encrypted with the session key that the
TGS and the client share. The resulting reply is shown in Figure A-4. Compare
this to Figure A-2 on page 247.

Figure A-4 Ticket-granting service's reply: service ticket

The client can decrypt this message using the session key it shares with the
TGS. It then stores the encrypted service ticket and the session key to share with
the application server, normally in the same ticket cache where it already has
stored the TGT and session key for the TGS.
 Appendix A. Kerberos 249

To actually request the application service, the client sends a request to that
server that consists of the name of the requested service, the encrypted service
ticket, and a newly generated authenticator to protect this message against
replay attacks. The authenticator is encrypted with the session key that the client
and the service share. The resulting application service request is shown in
Figure A-5. Note the resemblance to the request for ticket-granting service in
Figure A-3 on page 248.

Figure A-5 Client's application service request

The application server decrypts the service ticket with its secret key, uses the
enclosed session key to decrypt the authenticator, and checks the user’s identity
and the authenticator’s timestamp. Again, this processing is the same as for the
TGS processing the service ticket request. If all checks pass, the server performs
the requested service on behalf of the user.

Authorization: Kerberos is only responsible for authenticating the two
partners. Any authorization mechanism must be enforced by the application
itself.
250 Securing NFS in AIX

If the client requires mutual authentication (that is, the service has to prove its
identity to the client), the server could send back a message that is encrypted by
the session key it shares with the client, and application-dependent contents that
the client can verify. Because the service can only know the session key if it was
able to decrypt the service ticket, it must have known its secret key and so has
proven its identity.

Kerberos terminology
The following terms are used when discussing Kerberos authentication:

Realm A Kerberos domain that can consist of a number of
machines providing authentication services.

Principal A user or a service that uses authentication services and
is identified in the authentication database. For example,
root.admin@REALM1.IBM.COM, where root is the user
identity and admin the instance.

Instance In the case of a service instance, it represents the
occurrence of the server. Service example:
hardmon.sp21cw0, where hardmon represents the
service and sp21cw0 represents the node providing the
service.
In the case of a user, the instance represents the
Kerberos authority granted to the user. User example:
root.admin, where admin represents a Kerberos
authorization for administrative tasks in Kerberos.

Authentication database
A set of files containing the definitions of the Kerberos
authentication information. The authentication database is
maintained at the Kerberos server.

Ticket An encrypted message containing the identity of a user. A
ticket is passed from a client to a server as soon as a
Kerberos service is requested. Tickets have a
predetermined lifetime and have to be renewed
periodically.

Key An eight-byte form of a user or service password stored in
the authentication database. This password is associated
with a Kerberos user or service principal, not a user ID.
 Appendix A. Kerberos 251

Ticket-granting ticket
A ticket that is generated by the Kerberos authentication
database as proof that Kerberos recognizes the user as
an authorized user.

KDC The trusted third-party or intermediary in Kerberos that
issues all Kerberos tickets to the clients.

Where to find more information about Kerberos
Here is a list of references where you can find more information about Kerberos
and related products.

IBM Redbooks
(Redbooks are available for purchase or download at
http://www.redbooks.ibm.com.)

AIX 5L Version 5.2 Security Supplement, SG24-6066

This book includes a chapter titled “Exploiting Network Authentication
Service.” The chapter discusses IBM Network Authentication Service Version
1.3 for AIX, which is the IBM AIX implementation of Kerberos.

RS/6000 SP System Management: Easy, Lean and Mean, GG24-2563

This book discusses Kerberos in the context of the IBM Scalable
POWERparallel® System. Although the book is becoming dated (published in
1995), it contains useful overview material, and it has a useful step-by-step
illustration of the ticket-granting process.

Other IBM publications
AIX 5L Version 5.3 Security Guide, SC23-4907

This manual has a chapter dedicated to Kerberos. The chapter describes how
to implement and troubleshoot Kerberos authentication in AIX.

IBM Network Authentication Service Version 1.4 for AIX, Linux, and Solaris
Administrator’s and User’s Guide

This manual describes how to plan for, install, configure, and administer the
IBM Network Authentication Service Version 1.4.
252 Securing NFS in AIX

http://www.redbooks.ibm.com

Non-IBM publications
Kerberos: The Definitive Guide, by Jason Garman. O’Reilly & Associates, Inc.,
2003. ISBN 0596004036

The author’s own words describing this book (quoted from the preface): “This
book is geared toward the system administrator who wants to establish a
single sign-on network using Kerberos. This book is also useful for anyone
interested in how Kerberos performs its magic: the first three chapters will be
most helpful to these people.”

Red Hat Enterprise Linux 3 Reference Guide, Red Hat, Inc., 2003

This book has a chapter dedicated to Kerberos, where it briefly describes
Kerberos, discusses advantages and disadvantages, explains how it works,
and defines terminology.

The book is available for download from http://www.redhat.com.

The following Requests for Comment (RFCs) specify standards for Kerberos
implementations. The RFCs are available in text format at
http://www.ietf.org/rfc.html. They are also available both in text and PDF
format at http://www.faqs.org/rfcs/index.html.

RFC 1508 Generic Security Service Application Program Interface

RFC 1510 The Kerberos Network Authentication Service (V5)

RFC 1964 The Kerberos Version 5 GSS-API Mechanism

Other information sources
http://web.mit.edu/kerberos/index.html

This Web site is the main page for the MIT Kerberos project. It includes
documentation and tutorials to provide a better understanding of the protocol
and downloadable source code for interested developers.

http://www.cmf.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html

This is a comprehensive list of frequently asked questions compiled by Ken
Hornstein of the U.S. Naval Research Laboratory. It also contains links to
other useful sources of information.
 Appendix A. Kerberos 253

http://www.redhat.com
http://www.ietf.org/rfc.html
http://www.faqs.org/rfcs/index.html
http://web.mit.edu/kerberos/index.html
http://www.cmf.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html

254 Securing NFS in AIX

Appendix B. Sample scripts, files, and
output

This appendix provides copies of sample scripts from throughout the book.

It contains the following sections:

� Sample administrative scripts

� Sample client Kerberos configuration files

� LDIF sample file for KDC

� Sample iptrace output

B

© Copyright IBM Corp. 2004. All rights reserved. 255

Sample administrative scripts
In this section you will find sample scripts used during our testing and
implementation scenarios. If you decide to use the scripts, you should use them
only as templates. We do not recommend that you use the scripts in the provided
form without first carefully reviewing the code and adding error checking and
logging where needed. As provided, there is no form of error checking in the
scripts and this may lead to unexpected results.

Change the pseudo-root FS sample script
The script in Example B-1 can be used to set the pseudo-root FS.

Example: B-1 Sample script to set/change the pseudo-root FS

#!/bin/ksh

NEWNFSROOT="/exports"
#
exportfs -ua
/etc/nfs.clean
#
chnfs -r ${NEWNFSROOT}
#
lssrc -Ss nfsd | grep ${NEWNFSROOT}
#
nfsd -getnodes
#
/etc/nfs.clean
#
/etc/rc.nfs
#
lssrc -g nfs
#
ps -ef | grep nfsd
#
exportfs

Create a KDC server with NFS V4 server
The script in Example B-2 can be used to create and configure your KDC server
on the same system as your NFS V4 server.

Example: B-2 Sample script to create a KDC server with legacy database

#!/bin/ksh
HOST=$(hostname)
256 Securing NFS in AIX

IREALM=”REALM2.IBM.COM”
KDCSERV=”nfs403.itsc.austin.ibm.com”
DNSDOM=”itsc.austin.ibm.com”
NFSDOM=”itsc.austin.ibm.com”
#
HOST=”${HOST}.${DNSDOM}”
unset KRB5CCNAME
#
SECRET=”succ3ss”
#
#config.krb5 -S -d ${DNSDOM} -r ${IREALM}
mkkrb5srv -r ${IREALM} -d ${DNSDOM} -s ${HOST}
#
kinit admin/admin
klist
#
/mnt/scripts/create_initial_kdc_user.ksh
#
/usr/krb5/sbin/kadmin -p admin/admin -w ${SECRET}<< EOF
add_principal -e des-cbc-crc:normal -randkey nfs/${HOST}
EOF
#
/usr/krb5/sbin/kadmin -p admin/admin -w ${SECRET}<< EOF
ktadd nfs/${HOST}
EOF
#
nfshostkey -p nfs/${HOST} -f /etc/krb5/krb5.keytab
nfshostkey -l
#
chnfsdom ${NFSDOM}
chnfsdom
#
chnfsrtd -a ${IREALM} ${NFSDOM}
chnfsrtd
#
exportfs -ua
/etc/nfs.clean
chnfs -r /exports
/etc/nfs.clean
#
chnfs -S -B
#
cp /mnt/scripts/exports.v4krb5.fullclients /etc/exports
#
/etc/rc.nfs
exportfs -va
 Appendix B. Sample scripts, files, and output 257

Create a full client with legacy KDC server backend
This script can be used to create a full client with a legacy KDC server backend.

Example: B-3 Sample script to create a full client with a legacy backend

#!/bin/ksh
HOST=$(hostname)
IREALM=”REALM2.IBM.COM”
KDCSERV=”nfs402.itsc.austin.ibm.com”
DNSDOM=”itsc.austin.ibm.com”
NFSDOM=”itsc.austin.ibm.com”
#
HOST=”${HOST}.${DNSDOM}”
#
SECRET=”succ3ss”
#
unset KRB5CCNAME
#
setclock ${KDCSERV}
#
#config.krb5 -C -d $DNSDOM -r $IREALM -c $KDCSERV -s $KDCSERV
mkkrb5clnt -c $KDCSERV -r $IREALM -s $KDCSERV -d $DNSDOM
#
kinit admin/admin
klist
#
/usr/krb5/sbin/kadmin -p admin/admin -w ${SECRET}<< EOF
add_principal -e des-cbc-crc:normal -randkey nfs/${HOST}
EOF
#
/usr/krb5/sbin/kadmin -p admin/admin -w ${SECRET}<< EOF
ktadd nfs/${HOST}
EOF
#
nfshostkey -p nfs/${HOST} -f /etc/krb5/krb5.keytab
nfshostkey -l
#
chnfsdom ${NFSDOM}
chnfsdom
#
chnfsrtd -a ${IREALM} ${NFSDOM}
chnfsrtd
#
mkdir /nfs
#
chnfs -S -B
#
/etc/rc.nfs
258 Securing NFS in AIX

Create a Full Client with KDC and LDAP backend
The script in Example B-4 performs all operations to configure an NFS V4 full
Kerberos client with integrated login.

Example: B-4 Sample script to create a full client with KDC and LDAP backend

#!/bin/ksh
HOST=$(hostname)
IREALM=”REALM1.IBM.COM”
KDCSERV=”nfs407.itsc.austin.ibm.com”
LDAPSERV=”nfs407.itsc.austin.ibm.com”
DNSDOM=”itsc.austin.ibm.com”
NFSDOM=”itsc.austin.ibm.com”
#
HOST=”${HOST}.${DNSDOM}”
#
SECRET=”succ3ss”
ADMINDN=”cn=admin”
#
unset KRB5CCNAME
#
#synchronize the system time with the KDC Server
setclock ${KDCSERV}
#
mkkrb5clnt -c $KDCSERV -r $IREALM -s $KDCSERV -d $DNSDOM -l $LDAPSERV -i files
-A -K -T
#
mksecldap -c -h $LDAPSERV -a ${ADMINDN} -p ${SECRET}
#
/usr/sbin/ls-secldapclntd
#
echo “file /usr/lib/security/methods.cfg has to edited”
if grep -p ^KRB5LDAP /usr/lib/security/methods.cfg
then
 echo “file /usr/lib/security/methods.cfg contains KRB5LDAP no changes will
occure”
else
 echo “file /usr/lib/security/methods.cfg need to be changed”
 cp /usr/lib/security/methods.cfg /usr/lib/security/methods.cfg.save
 echo “\nKRB5LDAP:\n\toptions = db=LDAP,auth=KRB5” >>
/usr/lib/security/methods.cfg
fi
#
chsec -f /etc/security/user -s default -a registry=KRB5LDAP
chsec -f /etc/security/user -s default -a “SYSTEM=\”KRB5LDAP OR compat\””
#
chuser registry=files root
chuser SYSTEM=”compat” root
 Appendix B. Sample scripts, files, and output 259

#
kinit admin/admin
klist
#
/usr/krb5/sbin/kadmin -p admin/admin -w ${SECRET}<< EOF
add_principal -e des-cbc-crc:normal -randkey nfs/${HOST}
EOF
#
/usr/krb5/sbin/kadmin -p admin/admin -w ${SECRET}<< EOF
ktadd nfs/${HOST}
EOF
#
nfshostkey -p nfs/${HOST} -f /etc/krb5/krb5.keytab
nfshostkey -l
#
kdestroy
kinit -kt /etc/krb5/krb5.keytab nfs/${HOST}
#
chnfsdom ${NFSDOM}
chnfsdom
#
chnfsrtd -a ${IREALM} ${NFSDOM}
chnfsrtd
#
mkdir /nfs
#
chnfs -S -B
#
/etc/rc.nfs

Script to copy ACLs to an entire directory structure
The script in Example B-5 copies an ACL from a source file or directory to a
destination file or directory. If the -r option is specified and the destination is a
directory, the ACL is also copied to all files or subdirectories underneath the
destination directory.

Example: B-5 Sample script for copying an ACL (with recursive option)

#!/usr/bin/ksh
#
copy_acl.sh
#
Copy the ACL for the given source file/directory to other files/directories
#

Name of this script
scrname=${0##*/}
260 Securing NFS in AIX

#
Functions
#

function usage {
 echo "Usage: $scrname [-r] <source> <dest>"
 echo " where"
 echo " -r indicates a recursive copy"
 echo " (copy ACL to all files and directories below and including"
 echo " the destination.)"
 echo " <source> = the name of the file or directory to copy the ACL from"
 echo " <dest> = the name of the file or directory to copy the ACL to"

 exit 1
}

if [[$# -eq 0]]
then
 usage
fi

#
Process input parameters
#

if [["$1" = "-r"]]; then
 SETSUBTREE="true"
 shift
else
 SETSUBTREE="false"
fi

if [[-n "$1"]]; then
 SRC_NAME="$1"
else
 usage
fi

if [[-n "$2"]]; then
 DEST_NAME="$2"
else
 usage
fi

#
Initialize other variables
#

 Appendix B. Sample scripts, files, and output 261

NBERR=0
TMP_ACLFILE="/tmp/.AIXACL_$$"

if [[-e "${SRC_NAME}"]]; then
 aclget -o "${TMP_ACLFILE}" "${SRC_NAME}"
 NBERR=$?
else
 echo "Source \"${SRC_NAME}\" does not exist"
 NBERR=1
fi

if [["${NBERR}" -eq 0]]; then
 if [[-e "${DEST_NAME}"]]; then
 if [[-d "${DEST_NAME}" && "${SETSUBTREE}" = "true"]]; then
 find "${DEST_NAME}" -print | while read NAME
 do
 aclput -i "${TMP_ACLFILE}" "${NAME}"
 ((NBERR += $?))
 ls -dl "${NAME}"
 done
 else
 aclput -i "${TMP_ACLFILE}" "${DEST_NAME}"
 ((NBERR += $?))
 ls -dl "${DEST_NAME}"
 fi
 else
 echo "Destination \"${DEST_NAME}\" does not exist"
 NBERR=1
 fi
fi

rm -f "${TMP_ACLFILE}"
exit ${NBERR}

Windows command script to run ktpass
The Windows command script in Example B-6 was used to add the NFS service
principals for the created Windows Active Directory users.

Example: B-6 Sample ktpass_WinKDC command script

C:\PROGRA~1\SUPPOR~1\ktpass.exe -princ nfs/nfs403@KDC.ITSC.AUSTIN.IBM.COM
-mapuser nfs403 -pass nfs403 -out c:\misc\nfs403.keytab
C:\PROGRA~1\SUPPOR~1\ktpass.exe -princ nfs/nfs405@KDC.ITSC.AUSTIN.IBM.COM
-mapuser nfs405 -pass nfs405 -out c:\misc\nfs405.keytab
262 Securing NFS in AIX

Script to gather additional information for local AIX software support
The script in Example B-7 gathers additional information that the AIX snap
command does not gather. It is not intended as a substitute for the snap
command but should be used as an addition to the snap command and provided
to your local AIX Support Center.

Example: B-7 nfs_pd.script to gather additional information for IBM AIX support

#! /bin/ksh
****************************README***********************************
SPECIAL NOTICES
#
Information in this document is correct to the best of our
knowledge at the time of this writing.
Please use this information with care. IBM will not be
responsible for damages of any kind resulting from its use.
The use of this information is the sole responsibility of
the customer and depends on the customer's ability to eval-
uate and integrate this information into the customer's
operational environment.
#
This script will gather information about your networking environment
so that IBM may attempt to determine why your computer is experiencing
problems. You will need to run this script as the root user. If you
do not have enough space in the /tmp filesystem, you may need to increase
the size of this filesystem.
In order to run the script, you will need to give it execute permissions.
In order to do this, make sure your working directory is the directory
where the script is located. Then issue -
chmod +x nfs.script
#
To run the script from this directory, type -
./nfs_pd.script

#
In addition to this script, you may be asked to supply an iptrace with
your testcase. If you are asked to do so, the syntax is as follows -
startsrc -s iptrace -a "-a /tmp/iptrace.bin"
#
When you wish to stop the trace, issue -
stopsrc -s iptrace
You can tar this file along with the rest of the test case and upload it
following the instructions that the script outlines.
#
**

clear
echo ""
 Appendix B. Sample scripts, files, and output 263

echo "******************************WELCOME***************************"
echo ""
echo "************************EXECUTING NFS SCRIPT********************"
echo ""
echo "This script will generate a TESTCASE which should be sent to IBM"
echo "to be analyzed by AIX Software Support."
echo ""
echo "Please enter your 5 digit PMR number: "
read pmr
echo "Please enter you 3 digit branch number: "
read branch
echo "Please enter you 3 digit country code: "
read country
echo ""
echo "**************************Thank You*****************************"
echo ""
echo "**************Gathering TESTCASE...Please Standby...************"
echo ""

if [-d /tmp/ibm] ; then
echo ""
echo "Unable to create the /tmp/ibm directory because it already exists."
echo ""
echo "Exiting the script."
echo ""
 exit
else
 mkdir /tmp/ibm
fi

/usr/bin/date > /tmp/ibm/date.start
/usr/bin/uptime > /tmp/ibm/uptime.out
/usr/bin/uname -M > /tmp/ibm/uname-M.out
/usr/bin/uname -n > /tmp/ibm/uname-n.out
/usr/bin/hostname > /tmp/ibm/hostname.out
/usr/sbin/bootinfo -K > /tmp/ibm/bootinfo-K.out

echo "Gathering config files ..."
/usr/bin/cp /etc/inetd.conf /tmp/ibm/inetd.conf
/usr/bin/cp /etc/services /tmp/ibm/services
/usr/bin/cp /etc/inittab /tmp/ibm/inittab
/usr/bin/cp /etc/hosts /tmp/ibm/hosts
/usr/bin/cp /etc/filesystems /tmp/ibm/filesystems

if [-f /etc/auto*]; then
 /usr/bin/cp /etc/auto* /tmp/ibm/
fi

if [-f /etc/exports] ; then
264 Securing NFS in AIX

 /usr/bin/cp /etc/exports /tmp/ibm/exports
fi

if [-f /etc/xtab] ; then
 /usr/bin/cp /etc/xtab /tmp/ibm/xtab
fi

if [-f /etc/rmtab] ; then
 /usr/bin/cp /etc/rmtab /tmp/ibm/rmtab
fi

if [-f /etc/netsvc.conf] ; then
 /usr/bin/cp /etc/netsvc.conf /tmp/ibm/netsvc.conf
fi

if [-f /etc/resolv.conf] ; then
 /usr/bin/cp /etc/resolv.conf /tmp/ibm/resolv.conf
fi

if [-f /etc/irs.conf] ; then
 /usr/bin/cp /etc/irs.conf /tmp/ibm/irs.conf
fi

if [-f /etc/rc.nfs] ; then
 /usr/bin/cp /etc/rc.nfs /tmp/ibm/rc.nfs
fi

if [-f /etc/nfs/hostkey] ; then
 /usr/bin/cp /etc/nfs/hostkey /tmp/ibm/hostkey
fi

if [-f /etc/nfs/local_domain] ; then
 /usr/bin/cp /etc/nfs/local_domain /tmp/ibm/local_domain
fi

if [-f /etc/nfs/realm.map] ; then
 /usr/bin/cp /etc/nfs/realm.map /tmp/ibm/realm.map
fi

if [-f /etc/nfs/princmap] ; then
 /usr/bin/cp /etc/nfs/princmap /tmp/ibm/princmap
fi

if [-f /etc/nfs/security_default] ; then
 /usr/bin/cp /etc/nfs/security_default /tmp/ibm/security_default
fi

echo "Gathering TCP related command outputs ..."
/usr/bin/netstat -v > /tmp/ibm/netstat-v.out
 Appendix B. Sample scripts, files, and output 265

/usr/bin/netstat -in > /tmp/ibm/netstat-in.out
/usr/bin/netstat -rn > /tmp/ibm/netstat-rn.out
/usr/bin/netstat -an > /tmp/ibm/netstat-an.out
/usr/bin/netstat -s > /tmp/ibm/netstat-s.out
/usr/bin/netstat -m > /tmp/ibm/netstat-m.out

echo "Gathering OS related command ouput ..."
/usr/sbin/instfix -i > /tmp/ibm/instfix.out 2>&1
grep AIX /tmp/ibm/instfix.out > /tmp/ibm/aix_ml
/usr/sbin/lsattr -El sys0 > /tmp/ibm/sys0.out
/usr/sbin/lsattr -El inet0 > /tmp/ibm/inet0.out
/usr/sbin/lsattr -El aio0 > /tmp/ibm/aio0.out
/usr/bin/lssrc -ls inetd > /tmp/ibm/inetd.out
/usr/bin/lssrc -a > /tmp/ibm/lssrc-a.out
/usr/bin/lssrc -g tcpip > /tmp/ibm/lssrc-tcp.status
/usr/bin/lssrc -g nfs > /tmp/ibm/lssrc-nfs.status
/usr/bin/lslpp -h > /tmp/ibm/lslpp-h.out
/usr/bin/lppchk -v > /tmp/ibm/lppchk-v.out
/usr/bin/lppchk -c bos.net.* > /tmp/ibm/lppchk-c.out
/usr/sbin/scls -l > /tmp/ibm/scls-l.out
/usr/bin/ls -l /etc/*.conf > /tmp/ibm/conf.out
/usr/bin/what /usr/lib/drivers/netinet > /tmp/ibm/what-netinet
/usr/bin/cp /etc/trcfmt /tmp/ibm/trcfmt
/usr/bin/trcnm -a > /tmp/ibm/namelist

/usr/bin/errpt -a > /tmp/ibm/errpt-a.out
/usr/bin/ps -ef > /tmp/ibm/ps-ef.out
/usr/bin/ps aux > /tmp/ibm/psaux.out
/usr/bin/env > /tmp/ibm/env.out
/usr/bin/env | grep -i krb > /tmp/ibm/env_krb.out
/usr/bin/df -k > /tmp/ibm/df-k.out
/usr/sbin/no -a > /tmp/ibm/no.out
/usr/sbin/nfso -a > /tmp/ibm/nfso.out
/usr/bin/rpcinfo -p > /tmp/ibm/rpcinfo.out
/usr/sbin/arp -an > /tmp/ibm/arp.out
/usr/sbin/lsdev -Cc adapter > /tmp/ibm/adapter.out
/usr/sbin/lsdev -Cc if > /tmp/ibm/lsdev-if.out
/usr/sbin/lscfg -v > /tmp/ibm/lscfg-v.out

echo "Gathering NFS related command output ..."
/usr/bin/showmount -e > /tmp/ibm/showmount-e.out
/usr/sbin/mount > /tmp/ibm/mount.out
/usr/sbin/nfsstat -m > /tmp/ibm/nfsstat-m.out
/usr/sbin/nfsstat -cr > /tmp/ibm/nfsstat-cr.out
/usr/sbin/nfs4cl showfs > /tmp/ibm/nfs4cl_showfs.out
/usr/sbin/nfs4cl showstat > /tmp/ibm/nfs4cl_showstat.out
/usr/sbin/chnfsdom > /tmp/ibm/chnfsdom.out

/usr/bin/netstat -s > /tmp/ibm/netstat-s.out2
266 Securing NFS in AIX

/usr/bin/netstat -an > /tmp/ibm/netstat-an.out2

if [-f `which lsof`] ; then
 lsof > /tmp/ibm/lsof.out
fi

ADAPTERLIST="ent tok atm mpc fddi escon cat"
for i in $ADAPTERLIST
do
 for j in `/usr/sbin/lsdev -Cc adapter|grep "^$i"|awk '{print $1}'`
 do
 /usr/sbin/lsattr -El $j > /tmp/ibm/lsattr-El.$j.out
 /usr/sbin/lscfg -v $j > /tmp/ibm/lscfg-v.$j.out
 done
done

for i in `/usr/bin/netstat -in|grep -Ev "::1|Name|ink"|awk '{print $1}'`
do
 /etc/ifconfig $i > /tmp/ibm/ifconfig.$i.out
 /usr/sbin/lsattr -El $i > /tmp/ibm/lsattr-El.$i.out
done

/usr/bin/netstat -v > /tmp/ibm/netstat-v.out2
/usr/bin/netstat -in > /tmp/ibm/netstat-in.out2
/usr/bin/netstat -an > /tmp/ibm/netstat-an.out3
/usr/bin/netstat -s > /tmp/ibm/netstat-s.out3
/usr/bin/netstat -m > /tmp/ibm/netstat-m.out2
/usr/bin/netstat -v > /tmp/ibm/netstat-v.out3
/usr/bin/netstat -in > /tmp/ibm/netstat-in.out3
/usr/bin/netstat -an > /tmp/ibm/netstat-an.out4
/usr/bin/netstat -s > /tmp/ibm/netstat-s.out4
/usr/bin/netstat -m > /tmp/ibm/netstat-m.out3
/usr/sbin/nfs4cl showfs > /tmp/ibm/nfs4cl_showfs.out2
/usr/sbin/nfs4cl showstat > /tmp/ibm/nfs4cl_showstat.out2

/usr/bin/ps -ef > /tmp/ibm/ps-ef.out2
/usr/bin/ps aux > /tmp/ibm/psaux.out2

/usr/bin/date > /tmp/ibm/date.stop
cd /tmp/ibm
/usr/bin/tar -cf /tmp/$pmr.$branch.$country.tar *
cd /tmp
/usr/bin/compress $pmr.$branch.$country.tar
/usr/bin/rm -rf /tmp/ibm

clear
echo ""
echo "The script has completed. "
echo "There should be a "$pmr.$branch.$country".tar.Z file in your "
 Appendix B. Sample scripts, files, and output 267

echo "/tmp directory. Please ftp this file to your local IBM Support "
echo "Centre - your local IBM Support representative should be able to "
echo "provide the relevant details."
echo ""
echo "**************************Thank You*****************************"
echo ""
echo "Please be sure to use the bin mode within FTP, otherwise "
echo "the tar file may be corrupted."
echo ""
echo "*************Thank You For Using IBM AIX Software Support*******"
echo ""

Sample client Kerberos configuration files
This section provides the Kerberos configuration files from our test environment.

Kerberos configuration file /etc/krb5/krb5.conf with legacy backend
This is the sample configuration file used on clients with a legacy KDC database.

Example: B-8 Sample /etc/krb5/krb5.conf file with a legacy KDC database

[libdefaults]
 default_realm = REALM2.IBM.COM
 default_keytab_name = FILE:/etc/krb5/krb5.keytab
 default_tkt_enctypes = des3-cbc-sha1 arcfour-hmac aes256-cts
des-cbc-md5 des-cbc-crc
 default_tgs_enctypes = des3-cbc-sha1 arcfour-hmac aes256-cts
des-cbc-md5 des-cbc-crc

[realms]
 REALM2.IBM.COM = {
 kdc = nfs402.itsc.austin.ibm.com:88
 admin_server = nfs402.itsc.austin.ibm.com:749
 default_domain = ibm.com
 }

[domain_realm]
 .ibm.com = REALM2.IBM.COM
 nfs402.itsc.austin.ibm.com = REALM2.IBM.COM

[logging]
 kdc = FILE:/var/krb5/log/krb5kdc.log
 admin_server = FILE:/var/krb5/log/kadmin.log
 default = FILE:/var/krb5/log/krb5lib.log
268 Securing NFS in AIX

Kerberos configuration file /etc/krb5/krb5.conf with LDAP backend
Example B-9 shows the sample configuration file used on the clients with
Kerberos LDAP backend.

Example: B-9 Sample /etc/krb5/krb5.conf with KRB5 and LDAP backend

[libdefaults]
 default_realm = REALM1.IBM.COM
 default_keytab_name = FILE:/etc/krb5/krb5.keytab
 default_tkt_enctypes = des3-cbc-sha1 arcfour-hmac aes256-cts
des-cbc-md5 des-cbc-crc
 default_tgs_enctypes = des3-cbc-sha1 arcfour-hmac aes256-cts
des-cbc-md5 des-cbc-crc
 use_ldap_lookup = 1
 ldap_server = nfs407.itsc.austin.ibm.com

[realms]
 REALM1.IBM.COM = {
 kdc = nfs407.itsc.austin.ibm.com:88
 admin_server = nfs407.itsc.austin.ibm.com:749
 default_domain = itsc.austin.ibm.com
 }

[domain_realm]
 .itsc.austin.ibm.com = REALM1.IBM.COM
 nfs407.itsc.austin.ibm.com = REALM1.IBM.COM

[logging]
 kdc = FILE:/var/krb5/log/krb5kdc.log
admin_server = FILE:/var/krb5/log/kadmin.log
 default = FILE:/var/krb5/log/krb5lib.log

Kerberos configuration file /etc/krb5/krb5.conf with Windows Active
Directory backend

Example B-10 shows the sample configuration file used on clients with a
Miscrosoft Windows Active Directory backend.

Example: B-10 Sample /etc/krb5/krb5.conf with Windows Active Directory backend

[libdefaults]
 default_realm = KDC.ITSC.AUSTIN.IBM.COM
 default_keytab_name = FILE:/etc/krb5/krb5.keytab
 default_tkt_enctypes = des-cbc-md5 des-cbc-crc
 default_tgs_enctypes = des-cbc-md5 des-cbc-crc
 Appendix B. Sample scripts, files, and output 269

[realms]
 KDC.ITSC.AUSTIN.IBM.COM = {
 kdc = nfs409.kdc.itsc.austin.ibm.com:88
 admin_server = nfs409.kdc.itsc.austin.ibm.com:749
 default_domain = kdc.itsc.austin.ibm.com
 }

[domain_realm]
 .kdc.itsc.austin.ibm.com = KDC.ITSC.AUSTIN.IBM.COM
 nfs409.kdc.itsc.austin.ibm.com = KDC.ITSC.AUSTIN.IBM.COM

[logging]
 kdc = FILE:/var/krb5/log/krb5kdc.log
 admin_server = FILE:/var/krb5/log/kadmin.log
 default = FILE:/var/krb5/log/krb5lib.log

LDIF sample file for KDC
Example B-11 shows a sample LDIF file for the KDC LDAP container to work
with integrated logon into AIX. It is used in 5.9, “Preparing the system for Tivoli
Directory Server and Kerberos V5” on page 155.

Example: B-11 Sample realm_add_ibm.ldif file

The suffix “ou=Austin, o=IBM, c=US” should be defined before attempting to
load this data. Or change the suffix to be an already defined object.
Change all references of YOURHOSTNAME.AUSTIN.IBM.COM to be your realm name
#
version: 1

dn: o=IBM, c=US
objectclass: top
objectclass: organization
o: IBM

dn: krbrealmName-V2=REALM2.IBM.COM, o=IBM, c=US
objectclass: KrbRealm-V2
objectclass: KrbRealmExt
krbrealmName-V2: REALM2.IBM.COM
krbprincSubtree: krbrealmName-V2=REALM2.IBM.COM, o=IBM, c=US
krbDeleteType: 3

dn: cn=principal, krbrealmName-V2=REALM2.IBM.COM, o=IBM, c=US
objectclass: container
cn: principal
270 Securing NFS in AIX

dn: cn=policy, krbrealmName-V2=REALM2.IBM.COM, o=IBM, c=US
objectclass: container
cn: policy

Sample iptrace output
In this section we provide some sample iptrace output taken while setting up and
debugging our test environment.

Successful authentication during mount request
Example B-12 shows the iptrace taken during a succesful authentication while
carrying out an NFS V4 mount. We outlined the three major packages, which are:

� Kerberos ticket request KRB5 TGS-REQ
� Valid Kerberos ticket reply KRB5 TGS-REP
� The NFS V4 compound call

Example: B-12 Sample iptrace output showing successful authentication during mount

No. Time Source Destination Protocol Info
 167 20.373421 9.3.5.173 9.3.4.71 KRB5
TGS-REQ

Frame 167 (1311 bytes on wire, 1311 bytes captured)
 Arrival Time: Aug 6, 2004 15:30:07.127965000
 Time delta from previous packet: 0.000276000 seconds
 Time since reference or first frame: 20.373421000 seconds
 Frame Number: 167
 Packet Length: 1311 bytes
 Capture Length: 1311 bytes
Ethernet II, Src: 00:02:55:af:1c:8d, Dst: 00:09:12:48:3c:02
 Destination: 00:09:12:48:3c:02 (Cisco_48:3c:02)
 Source: 00:02:55:af:1c:8d (Ibm_af:1c:8d)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 9.3.5.173 (9.3.5.173), Dst Addr: 9.3.4.71
(9.3.4.71)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 1297
 Identification: 0x0586 (1414)
 Flags: 0x00
 Appendix B. Sample scripts, files, and output 271

 0... = Reserved bit: Not set
 .0.. = Don’t fragment: Not set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 30
 Protocol: UDP (0x11)
 Header checksum: 0x765d (correct)
 Source: 9.3.5.173 (9.3.5.173)
 Destination: 9.3.4.71 (9.3.4.71)
User Datagram Protocol, Src Port: 32925 (32925), Dst Port: kerberos (88)
 Source port: 32925 (32925)
 Destination port: kerberos (88)
 Length: 1277
 Checksum: 0xc985 (correct)
Kerberos TGS-REQ
 Pvno: 5
 MSG Type: TGS-REQ (12)
 padata: PA-TGS-REQ
 Type: PA-TGS-REQ (1)
 Value: 6E82045F3082045BA003020105A10302... AP-REQ
 Pvno: 5
 MSG Type: AP-REQ (14)
 Padding: 0
 APOptions: 00000000
 .0.. = Use Session Key:
Do NOT use the session key to encrypt the ticket
 ..0. = Mutual required:
Mutual authentication is NOT required
 Ticket
 Tkt-vno: 5
 Realm: KDC.ITSC.AUSTIN.IBM.COM
 Server Name (Unknown): krbtgt KDC.ITSC.AUSTIN.IBM.COM
 Name-type: Unknown (0)
 Name: krbtgt
 Name: KDC.ITSC.AUSTIN.IBM.COM
 enc-part rc4-hmac
 Encryption type: rc4-hmac (23)
 Kvno: 2
 enc-part: 68A3BA1DDDD3C5E05848A0D3BA2C1F05...
 Authenticator des-cbc-md5
 Encryption type: des-cbc-md5 (3)
 Authenticator data: 7333893FE36467A6E3AB514BE8740E20...
 KDC_REQ_BODY
 Padding: 0
 KDCOptions: 00800000 (Renewable)
 .0.. = Forwardable: Do NOT use
forwardable tickets
 ..0. = Forwarded: This is NOT a
forwarded ticket
272 Securing NFS in AIX

 ...0 = Proxyable: Do NOT use
proxiable tickets
 0... = Proxy: This ticket has
NOT been proxied
 0.. = Allow Postdate: We do NOT
allow the ticket to be postdated
 0. = Postdated: This ticket is
NOT postdated
 1... = Renewable: This ticket is
RENEWABLE
 0 = Opt HW Auth: False
 0 = Canonicalize: This is NOT
a canonicalized ticket request
 0. = Disable Transited Check:
Transited checking is NOT disabled
 0 = Renewable OK: We do NOT
accept renewed tickets
 0... = Enc-Tkt-in-Skey: Do NOT
encrypt the tkt inside the skey
 0. = Renew: This is NOT a
request to renew a ticket
 0 = Validate: This is NOT a
request to validate a postdated ticket
 Realm: KDC.ITSC.AUSTIN.IBM.COM
 Server Name (Principal): nfs nfs403
 Name-type: Principal (1)
 Name: nfs
 Name: nfs403
 till: 2004-08-07 06:31:00 (Z)
 Nonce: 1091824267
 Encryption Types: des-cbc-md5 des-cbc-crc
 Encryption type: des-cbc-md5 (3)
 Encryption type: des-cbc-crc (1)

No. Time Source Destination Protocol Info
 168 20.375701 9.3.4.71 9.3.5.173 KRB5
TGS-REP

Frame 168 (1282 bytes on wire, 1282 bytes captured)
 Arrival Time: Aug 6, 2004 15:30:07.130245000
 Time delta from previous packet: 0.002280000 seconds
 Time since reference or first frame: 20.375701000 seconds
 Frame Number: 168
 Packet Length: 1282 bytes
 Capture Length: 1282 bytes
Ethernet II, Src: 00:09:12:48:3c:02, Dst: 00:02:55:af:1c:8d
 Destination: 00:02:55:af:1c:8d (Ibm_af:1c:8d)
 Source: 00:09:12:48:3c:02 (Cisco_48:3c:02)
 Type: IP (0x0800)
 Appendix B. Sample scripts, files, and output 273

Internet Protocol, Src Addr: 9.3.4.71 (9.3.4.71), Dst Addr: 9.3.5.173
(9.3.5.173)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 1268
 Identification: 0xb478 (46200)
 Flags: 0x00
 0... = Reserved bit: Not set
 .0.. = Don’t fragment: Not set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 127
 Protocol: UDP (0x11)
 Header checksum: 0x6687 (correct)
 Source: 9.3.4.71 (9.3.4.71)
 Destination: 9.3.5.173 (9.3.5.173)
User Datagram Protocol, Src Port: kerberos (88), Dst Port: 32925 (32925)
 Source port: kerberos (88)
 Destination port: 32925 (32925)
 Length: 1248
 Checksum: 0x5cb7 (correct)
Kerberos TGS-REP
 Pvno: 5
 MSG Type: TGS-REP (13)
 Client Realm: KDC.ITSC.AUSTIN.IBM.COM
 Client Name (Principal): nfs nfs403
 Name-type: Principal (1)
 Name: nfs
 Name: nfs403
 Ticket
 Tkt-vno: 5
 Realm: KDC.ITSC.AUSTIN.IBM.COM
 Server Name (Principal): nfs nfs403
 Name-type: Principal (1)
 Name: nfs
 Name: nfs403
 enc-part des-cbc-md5
 Encryption type: des-cbc-md5 (3)
 Kvno: 5
 enc-part: 2F97563D681D6BB1DC8B010025F82DB9...
 enc-part des-cbc-md5
 Encryption type: des-cbc-md5 (3)
 enc-part: 76C193F0DB908DB403831A7B45167357...
274 Securing NFS in AIX

No. Time Source Destination Protocol Info
 173 20.385891 9.3.5.173 9.3.5.173 NFS V4
NULL Call (Reply In 175)

Frame 173 (1288 bytes on wire, 1288 bytes captured)
 Arrival Time: Aug 6, 2004 15:30:07.140435000
 Time delta from previous packet: 0.000048000 seconds
 Time since reference or first frame: 20.385891000 seconds
 Frame Number: 173
 Packet Length: 1288 bytes
 Capture Length: 1288 bytes
Raw packet data
 No link information available
Internet Protocol, Src Addr: 9.3.5.173 (9.3.5.173), Dst Addr: 9.3.5.173
(9.3.5.173)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 1288
 Identification: 0x058c (1420)
 Flags: 0x04 (Don’t Fragment)
 0... = Reserved bit: Not set
 .1.. = Don’t fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 60
 Protocol: TCP (0x06)
 Header checksum: 0x0000 (incorrect, should be 0x1705)
 Source: 9.3.5.173 (9.3.5.173)
 Destination: 9.3.5.173 (9.3.5.173)
Transmission Control Protocol, Src Port: 32775 (32775), Dst Port: 2049 (2049),
Seq: 1, Ack: 1, Len: 1236
 Source port: 32775 (32775)
 Destination port: 2049 (2049)
 Sequence number: 1 (relative sequence number)
 Next sequence number: 1237 (relative sequence number)
 Acknowledgement number: 1 (relative ack number)
 Header length: 32 bytes
 Flags: 0x0018 (PSH, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 1... = Push: Set
 0.. = Reset: Not set
 0. = Syn: Not set
 Appendix B. Sample scripts, files, and output 275

 0 = Fin: Not set
 Window size: 262140
 Checksum: 0xa5d8 (correct)
 Options: (12 bytes)
 NOP
 NOP
 Time stamp: tsval 1091824482, tsecr 1091824482
Remote Procedure Call, Type:Call XID:0x77709946
 Fragment header: Last fragment, 1232 bytes
 1... = Last Fragment: Yes
 .000 0000 0000 0000 0000 0100 1101 0000 = Fragment Length: 1232
 XID: 0x77709946 (2003867974)
 Message Type: Call (0)
 RPC Version: 2
 Program: NFS (100003)
 Program Version: 4
 Procedure: NULL (0)
 The reply to this request is in frame 175
 Credentials
 Flavor: RPCSEC_GSS (6)
 Length: 20
 GSS Version: 1
 GSS Procedure: RPCSEC_GSS_INIT (1)
 GSS Sequence Number: 1
 GSS Service: rpcsec_gss_svc_none (1)
 GSS Context: <EMPTY>
 length: 0
 contents: <EMPTY>
 Verifier
 Flavor: AUTH_NULL (0)
 Length: 0
Network File System
 Program Version: 4
 V4 Procedure: NULL (0)
 GSS Token
 GSS Token Length: 1165
 GSS-API
 OID: 1.2.840.113554.1.2.2 (iso.2.840.113554.1.2.2) (KRB5 - Kerberos
5)
 krb5_blob: 01006E82047830820474A003020105A1...
 krb5_tok_id: KRB5_AP_REQ (0x0001)
 Kerberos AP-REQ
 Pvno: 5
 MSG Type: AP-REQ (14)
 Padding: 0
 APOptions: 20000000 (Mutual required)
 .0.. = Use Session
Key: Do NOT use the session key to encrypt the ticket
276 Securing NFS in AIX

 ..1. = Mutual
required: MUTUAL authentication is REQUIRED
 Ticket
 Tkt-vno: 5
 Realm: KDC.ITSC.AUSTIN.IBM.COM
 Server Name (Principal): nfs nfs403
 Name-type: Principal (1)
 Name: nfs
 Name: nfs403
 enc-part des-cbc-md5
 Encryption type: des-cbc-md5 (3)
 Kvno: 5
 enc-part: 2F97563D681D6BB1DC8B010025F82DB9...
 Authenticator des-cbc-md5
 Encryption type: des-cbc-md5 (3)
 Authenticator data: 5B51E74785A4CBB0369C571DED75B7EB...

No. Time Source Destination Protocol Info
 175 20.431180 9.3.5.173 9.3.5.173 NFS V4
NULL Reply (Call In 173)

Frame 175 (276 bytes on wire, 276 bytes captured)
 Arrival Time: Aug 6, 2004 15:30:07.185724000
 Time delta from previous packet: 0.044970000 seconds
 Time since reference or first frame: 20.431180000 seconds
 Frame Number: 175
 Packet Length: 276 bytes
 Capture Length: 276 bytes
Raw packet data
 No link information available
Internet Protocol, Src Addr: 9.3.5.173 (9.3.5.173), Dst Addr: 9.3.5.173
(9.3.5.173)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 276
 Identification: 0x0596 (1430)
 Flags: 0x04 (Don’t Fragment)
 0... = Reserved bit: Not set
 .1.. = Don’t fragment: Set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 60
 Protocol: TCP (0x06)
 Header checksum: 0x0000 (incorrect, should be 0x1aef)
 Source: 9.3.5.173 (9.3.5.173)
 Appendix B. Sample scripts, files, and output 277

 Destination: 9.3.5.173 (9.3.5.173)
Transmission Control Protocol, Src Port: 2049 (2049), Dst Port: 32775 (32775),
Seq: 1, Ack: 1237, Len: 224
 Source port: 2049 (2049)
 Destination port: 32775 (32775)
 Sequence number: 1 (relative sequence number)
 Next sequence number: 225 (relative sequence number)
 Acknowledgement number: 1237 (relative ack number)
 Header length: 32 bytes
 Flags: 0x0018 (PSH, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 1... = Push: Set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 262140
 Checksum: 0x31fd (correct)
 Options: (12 bytes)
 NOP
 NOP
 Time stamp: tsval 1091824482, tsecr 1091824482
Remote Procedure Call, Type:Reply XID:0x77709946
 Fragment header: Last fragment, 220 bytes
 1... = Last Fragment: Yes
 .000 0000 0000 0000 0000 0000 1101 1100 = Fragment Length: 220
 XID: 0x77709946 (2003867974)
 Message Type: Reply (1)
 Program: NFS (100003)
 Program Version: 4
 Procedure: NULL (0)
 Reply State: accepted (0)
 This is a reply to a request in frame 173
 Time from request: 0.045289000 seconds
 Verifier
 Flavor: RPCSEC_GSS (6)
 GSS Token
 GSS Token Length: 37
 GSS-API
 OID: 1.2.840.113554.1.2.2 (iso.2.840.113554.1.2.2) (KRB5 -
Kerberos 5)
 krb5_blob: 01010000FFFFFFFFE975FD4C7682CD7D...
 krb5_tok_id: KRB5_GSS_GetMIC (0x0101)
 krb5_sgn_alg: DES MAC MD5 (0x0000)
 krb5_snd_seq: E975FD4C7682CD7D
 krb5_sgn_cksum: 8E63BCC171B105D2
 Accept State: RPC executed successfully (0)
278 Securing NFS in AIX

Network File System
 Program Version: 4
 V4 Procedure: NULL (0)
 GSS Context: <DATA>
 length: 4
 contents: <DATA>
 GSS Major Status: 0
 GSS Minor Status: 0
 GSS Sequence Window: 48
 GSS Token
 GSS Token Length: 131
 GSS-API
 OID: 1.2.840.113554.1.2.2 (iso.2.840.113554.1.2.2) (KRB5 - Kerberos
5)
 krb5_blob: 02006F71306FA003020105A10302010F...
 krb5_tok_id: KRB5_AP_REP (0x0002)
 Kerberos AP-REP
 Pvno: 5
 MSG Type: AP-REP (15)
 enc-part des-cbc-md5
 Encryption type: des-cbc-md5 (3)
 enc-part: A949C61E03CE98601CEC6B2A55D24725...

No. Time Source Destination Protocol Info
 176 20.434340 9.3.5.173 9.3.5.173 NFS V4
COMPOUND Call (Reply In 177)

Frame 176 (212 bytes on wire, 212 bytes captured)
 Arrival Time: Aug 6, 2004 15:30:07.188884000
 Time delta from previous packet: 0.003160000 seconds
 Time since reference or first frame: 20.434340000 seconds
 Frame Number: 176
 Packet Length: 212 bytes
 Capture Length: 212 bytes
Raw packet data
 No link information available
Internet Protocol, Src Addr: 9.3.5.173 (9.3.5.173), Dst Addr: 9.3.5.173
(9.3.5.173)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 212
 Identification: 0x059b (1435)
 Flags: 0x04 (Don’t Fragment)
 0... = Reserved bit: Not set
 .1.. = Don’t fragment: Set
 Appendix B. Sample scripts, files, and output 279

 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 60
 Protocol: TCP (0x06)
 Header checksum: 0x0000 (incorrect, should be 0x1b2a)
 Source: 9.3.5.173 (9.3.5.173)
 Destination: 9.3.5.173 (9.3.5.173)
Transmission Control Protocol, Src Port: 32775 (32775), Dst Port: 2049 (2049),
Seq: 1237, Ack: 225, Len: 160
 Source port: 32775 (32775)
 Destination port: 2049 (2049)
 Sequence number: 1237 (relative sequence number)
 Next sequence number: 1397 (relative sequence number)
 Acknowledgement number: 225 (relative ack number)
 Header length: 32 bytes
 Flags: 0x0018 (PSH, ACK)
 0... = Congestion Window Reduced (CWR): Not set
 .0.. = ECN-Echo: Not set
 ..0. = Urgent: Not set
 ...1 = Acknowledgment: Set
 1... = Push: Set
 0.. = Reset: Not set
 0. = Syn: Not set
 0 = Fin: Not set
 Window size: 262140
 Checksum: 0x56db (correct)
 Options: (12 bytes)
 NOP
 NOP
 Time stamp: tsval 1091824482, tsecr 1091824482
 SEQ/ACK analysis
 This is an ACK to the segment in frame: 175
 The RTT to ACK the segment was: 0.003160000 seconds
Remote Procedure Call, Type:Call XID:0x7770994d
 Fragment header: Last fragment, 156 bytes
 1... = Last Fragment: Yes
 .000 0000 0000 0000 0000 0000 1001 1100 = Fragment Length: 156
 XID: 0x7770994d (2003867981)
 Message Type: Call (0)
 RPC Version: 2
 Program: NFS (100003)
 Program Version: 4
 Procedure: COMPOUND (1)
 The reply to this request is in frame 177
 Credentials
 Flavor: RPCSEC_GSS (6)
 Length: 24
 GSS Version: 1
 GSS Procedure: RPCSEC_GSS_DATA (0)
280 Securing NFS in AIX

 GSS Sequence Number: 2
 GSS Service: rpcsec_gss_svc_none (1)
 GSS Context: <DATA>
 length: 4
 contents: <DATA>
 Verifier
 Flavor: RPCSEC_GSS (6)
 GSS Token
 GSS Token Length: 37
 GSS-API
 OID: 1.2.840.113554.1.2.2 (iso.2.840.113554.1.2.2) (KRB5 -
Kerberos 5)
 krb5_blob: 01010000FFFFFFFF28D134F10157FBBD...
 krb5_tok_id: KRB5_GSS_GetMIC (0x0101)
 krb5_sgn_alg: DES MAC MD5 (0x0000)
 krb5_snd_seq: 28D134F10157FBBD
 krb5_sgn_cksum: 9971CB9E15D6C1A5
Network File System
 Program Version: 4
 V4 Procedure: COMPOUND (1)
 Tag: nfs4pathlookup
 length: 14
 contents: nfs4pathlookup
 fill bytes: opaque data
 minorversion: 0
 Operations (count: 3)
 Opcode: PUTROOTFH (24)
 Opcode: LOOKUP (15)
 Filename: exports
 length: 7
 contents: exports
 fill bytes: opaque data
 Opcode: GETFH (10)

Unsuccessful authentication during mount request
Example B-13 shows the iptrace output taken during an unsuccessful
authentication that was done while carrying out an NFS V4 mount. We outlined
the two major packages, which are:

� Kerberos ticket request KRB5 TGS-REQ
� Invalid Kerberos ticket reply KRB5 TGS-REP

Example: B-13 iptrace output showing unsuccessful authentication during mount

No. Time Source Destination Protocol Info
 115 10.421160 9.3.5.175 9.3.4.71 KRB5
TGS-REQ
 Appendix B. Sample scripts, files, and output 281

Frame 115 (1335 bytes on wire, 1335 bytes captured)
 Arrival Time: Aug 6, 2004 15:34:37.198215000
 Time delta from previous packet: 0.000246000 seconds
 Time since reference or first frame: 10.421160000 seconds
 Frame Number: 115
 Packet Length: 1335 bytes
 Capture Length: 1335 bytes
Ethernet II, Src: 00:02:55:af:12:7a, Dst: 00:09:12:48:3c:02
 Destination: 00:09:12:48:3c:02 (Cisco_48:3c:02)
 Source: 00:02:55:af:12:7a (Ibm_af:12:7a)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 9.3.5.175 (9.3.5.175), Dst Addr: 9.3.4.71
(9.3.4.71)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 1321
 Identification: 0x8efa (36602)
 Flags: 0x00
 0... = Reserved bit: Not set
 .0.. = Don’t fragment: Not set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 30
 Protocol: UDP (0x11)
 Header checksum: 0xecce (correct)
 Source: 9.3.5.175 (9.3.5.175)
 Destination: 9.3.4.71 (9.3.4.71)
User Datagram Protocol, Src Port: 33735 (33735), Dst Port: kerberos (88)
 Source port: 33735 (33735)
 Destination port: kerberos (88)
 Length: 1301
 Checksum: 0xe902 (correct)
Kerberos TGS-REQ
 Pvno: 5
 MSG Type: TGS-REQ (12)
 padata: PA-TGS-REQ
 Type: PA-TGS-REQ (1)
 Value: 6E82045F3082045BA003020105A10302... AP-REQ
 Pvno: 5
 MSG Type: AP-REQ (14)
 Padding: 0
 APOptions: 00000000
 .0.. = Use Session Key:
Do NOT use the session key to encrypt the ticket
282 Securing NFS in AIX

 ..0. = Mutual required:
Mutual authentication is NOT required
 Ticket
 Tkt-vno: 5
 Realm: KDC.ITSC.AUSTIN.IBM.COM
 Server Name (Unknown): krbtgt KDC.ITSC.AUSTIN.IBM.COM
 Name-type: Unknown (0)
 Name: krbtgt
 Name: KDC.ITSC.AUSTIN.IBM.COM
 enc-part rc4-hmac
 Encryption type: rc4-hmac (23)
 Kvno: 2
 enc-part: 242AC4DAA22D420C592754948B7C2399...
 Authenticator des-cbc-md5
 Encryption type: des-cbc-md5 (3)
 Authenticator data: 0EDE8A3F1B5C370A818DC7CFEF1BC12B...
 KDC_REQ_BODY
 Padding: 0
 KDCOptions: 00800000 (Renewable)
 .0.. = Forwardable: Do NOT use
forwardable tickets
 ..0. = Forwarded: This is NOT a
forwarded ticket
 ...0 = Proxyable: Do NOT use
proxiable tickets
 0... = Proxy: This ticket has
NOT been proxied
 0.. = Allow Postdate: We do NOT
allow the ticket to be postdated
 0. = Postdated: This ticket is
NOT postdated
 1... = Renewable: This ticket is
RENEWABLE
 0 = Opt HW Auth: False
 0 = Canonicalize: This is NOT
a canonicalized ticket request
 0. = Disable Transited Check:
Transited checking is NOT disabled
 0 = Renewable OK: We do NOT
accept renewed tickets
 0... = Enc-Tkt-in-Skey: Do NOT
encrypt the tkt inside the skey
 0. = Renew: This is NOT a
request to renew a ticket
 0 = Validate: This is NOT a
request to validate a postdated ticket
 Realm: KDC.ITSC.AUSTIN.IBM.COM
 Server Name (Principal): nfs nfs403.kdc.itsc.austin.ibm.com
 Name-type: Principal (1)
 Appendix B. Sample scripts, files, and output 283

 Name: nfs
 Name: nfs403.kdc.itsc.austin.ibm.com
 till: 2004-08-07 06:35:49 (Z)
 Nonce: 1091824487
 Encryption Types: des-cbc-md5 des-cbc-crc
 Encryption type: des-cbc-md5 (3)
 Encryption type: des-cbc-crc (1)

No. Time Source Destination Protocol Info
 116 10.422686 9.3.4.71 9.3.5.175 KRB5 KRB
Error: KRB5KDC_ERR_S_PRINCIPAL_UNKNOWN

Frame 116 (164 bytes on wire, 164 bytes captured)
 Arrival Time: Aug 6, 2004 15:34:37.199741000
 Time delta from previous packet: 0.001526000 seconds
 Time since reference or first frame: 10.422686000 seconds
 Frame Number: 116
 Packet Length: 164 bytes
 Capture Length: 164 bytes
Ethernet II, Src: 00:09:12:48:3c:02, Dst: 00:02:55:af:12:7a
 Destination: 00:02:55:af:12:7a (Ibm_af:12:7a)
 Source: 00:09:12:48:3c:02 (Cisco_48:3c:02)
 Type: IP (0x0800)
Internet Protocol, Src Addr: 9.3.4.71 (9.3.4.71), Dst Addr: 9.3.5.175
(9.3.5.175)
 Version: 4
 Header length: 20 bytes
 Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)
 0000 00.. = Differentiated Services Codepoint: Default (0x00)
 0. = ECN-Capable Transport (ECT): 0
 0 = ECN-CE: 0
 Total Length: 150
 Identification: 0xb67d (46717)
 Flags: 0x00
 0... = Reserved bit: Not set
 .0.. = Don’t fragment: Not set
 ..0. = More fragments: Not set
 Fragment offset: 0
 Time to live: 127
 Protocol: UDP (0x11)
 Header checksum: 0x68de (correct)
 Source: 9.3.4.71 (9.3.4.71)
 Destination: 9.3.5.175 (9.3.5.175)
User Datagram Protocol, Src Port: kerberos (88), Dst Port: 33735 (33735)
 Source port: kerberos (88)
 Destination port: 33735 (33735)
 Length: 130
 Checksum: 0x31df (correct)
Kerberos KRB-ERROR
284 Securing NFS in AIX

 Pvno: 5
 MSG Type: KRB-ERROR (30)
 stime: 2004-08-06 20:35:56 (Z)
 susec: 211147
 error_code: KRB5KDC_ERR_S_PRINCIPAL_UNKNOWN (7)
 Realm: KDC.ITSC.AUSTIN.IBM.COM
 Server Name (Principal): nfs nfs403.kdc.itsc.austin.ibm.com
 Name-type: Principal (1)
 Name: nfs
 Name: nfs403.kdc.itsc.austin.ibm.com
 Appendix B. Sample scripts, files, and output 285

286 Securing NFS in AIX

Appendix C. AIX 5.3 NFS quick reference

The purpose of this appendix is to provide a quick reference sheet for NFS on
AIX 5.3. It includes the following sections:

� NFS configuration files

� NFS daemons

� NFS commands

� Export options

� mount command options

� nfso command options

C

© Copyright IBM Corp. 2004. All rights reserved. 287

NFS configuration files
/etc/rc.nfs

Starts NFS on boot.

/etc/filesystems

Contains file systems to be mounted.

/etc/exports

Contains NFS export definitions.

/etc/xtab

Contains names of file systems currently exported.

/etc/rmtab

Contains names of machines and the file systems they
have mounted.

/etc/sm

Directory used by rpc.statd

/etc/sm.bak

Directory used by rpc.statd

/etc/state

File used by rpc.statd

/etc/nfs/realm.map

File used by the NFS registry daemon to map
incoming Kerberos principals.

/etc/nfs/local_domain

File containing the local NFS domain.

/etc/nfs/hostkey

File used by the NFS server to specify the Kerberos
host principal and location of the keytab file.

/etc/nfs/princmap

File maps host names to Kerberos principals when the
principal is not the fully qualified domain name of the
server.

/etc/nfs/security_default

File containing the list of security flavors that may be
used by the NFS client.
288 Securing NFS in AIX

/etc/bootparms

File containing list of servers that diskless clients can
use to boot from.

/etc/networks

File containing information about networks.

/etc/pcnfsd.conf

File containing options for the rpc.pcnfsd daemon.

/etc/rpc

File containing database information for RPC
programs.

/etc/netgroup
File defining network-wide groups; used for checking
permissions when doing remote mounts, remote
logons, and remote shells.
 Appendix C. AIX 5.3 NFS quick reference 289

NFS daemons
/usr/sbin/rpc.lockd

Processes lock requests through the RPC package.

/usr/sbin/rpc.statd

Provides crash-and-recovery functions for the NFS
locking services.

/usr/sbin/biod

Sends the client’s read and write requests to the
server; runs only on the client.

/usr/sbin/rpc.mountd

Answers requests from clients for file system mounts;
runs only on the server

/usr/sbin/nfsd

Starts the daemons that handle a client’s request for
file system operations; runs only on the server.

/usr/sbin/portmap

Maps RPC program numbers to Internet port numbers.

/usr/sbin/rpc.statd

Returns performance statistics obtained from the
kernel.

/usr/sbin/pcnfsd

Handles service requests from PC-NFS clients.

/usr/bin/gssd

New daemon for NFS V4 that services kernel requests
for GSS operations.

/usr/sbin/nfsrgyd

New daemon for NFS V4 that provides a name
translation service for NFS servers and clients.
290 Securing NFS in AIX

NFS commands
/usr/sbin/mount

Shows what file systems are mounted on the machine
the command is run on, including name of the server,
and mount options.

/usr/bin/showmount -e [host]

Shows contents of /etc/xtab file on the [host].

/usr/bin/showmount -a [host]

Shows the contents of the /etc/rmtab on the [host].

/usr/sbin/exportfs -va

Exports all file systems defined in /etc/exports and
prints the name of each directory as it is exported.

/usr/sbin/exportfs -vua

Unexports all exported directories and prints the name
of each directory as it is unexported.

/usr/sbin/mknfs

Configures a system to run NFS and starts NFS
daemons.

/usr/sbin/nfso

Configures and lists NFS network options.

/usr/sbin/automount

Mounts an NFS automatically.

/usr/bin/chnfsexp

Changes the attributes of an NFS exported directory.

/usr/sbin/chnfsmnt

Changes the attributes of an NFS mounted directory.

/usr/sbin/lsnfsexp

Displays the characteristics of directories that are
exported with NFS.

/usr/sbin/lsnfsmnt

Displays the characteristics of mounted NFS.

/usr/sbin/mknfsexp

Exports a directory.
 Appendix C. AIX 5.3 NFS quick reference 291

/usr/sbin/mknfsmnt

Mounts a directory using NFS.

/usr/sbin/rmnfs

Changes the configuration of NFS in system inittab
and stops the NFS daemons.

/usr/sbin/rmnfsexp

Removes NFS exported directories from a server’s list
of exports.

/usr/sbin/chnfsdom

Changes the local NFS domain.

/usr/sbin/nfs4cl

Displays or modifies current NFS V4 statistics and
properties.

/usr/sbin/nfshostkey

Configures the host key for an NFS server.

/usr/sbin/chnfsim

Changes the NFS foreign identity mappings.
292 Securing NFS in AIX

Export options
-o options

-rw

All clients have read-write permission (default).

-ro

All clients have read-only permission.

-rw=Client [:Client]

Exports the directory with read-write permission to the
specified clients. Exports the directory read-only to
clients not in the list.

-access=Client[:Client,...]

Gives mount access to each client listed. A client can
be either a host name or a net group name.

-root=Client[:Client]

Allows root access from the specified clients.

-vers=version_number [:version_number]

Specifies which versions of NFS are allowed to access
the exported directory. Valid versions are 2, 3, and 4.

-exname=external-name

Exports the directory by the specified external name.
The external name must begin with the nfsroot name.

-sec=flavor[:flavor...]

Used to specify a list of security methods that may be
used to access files under the exported directory.
Allowable flavor values are: sys, dh, none, krb5, krb5i
and krb5p.

-nfsroot
Sets the nfsroot to a specified directory. For example,
/exports -nfsroot.
 Appendix C. AIX 5.3 NFS quick reference 293

mount command options
-o options

ro

Specifies that the mounted file is read-only.

rw

Specifies that the mounted file is read/write accessible
(default).

fg

Attempts mount in foreground if first attempt is
unsuccessful (default).

bg

 Attempts mount in background if first attempt is
unsuccessful.

hard

Retries a request until server responds (default).

soft

Returns an error if the server does not respond.

intr

Allows keyboard interrupts on hard mounts.

nointr

Specifies no keyboard interrupts allowed on hard
mounts.

acl

Requests using the Access Control List RPC program
for this NFS mount.

sec=[flavor1:...:flavorn]

Specifies a list of security methods that may be used
to access files under the mount point. Allowable
security flavors are: sys, dh, krb5, krb5i and krb5p

vers=Version

Specifies NFS version. Options are 2, 3, and 4.
vers=4 is only applicable to AIX 5.3.
294 Securing NFS in AIX

nfso command options
Use the nfso command to configure Network File System tuning parameters.
The nfso command sets or displays current or next boot values for Network File
System tuning parameters. This command can also make permanent changes or
defer changes until the next reboot. Whether the command sets or displays a
parameter is determined by the accompanying flag. The -o flag performs both
actions. It can either display the value of a parameter or set a new value for a
parameter.

NFS V4 introduces the following new tunable parameters:

utf8

This option enables NFS V4 to perform UTF8
checking.

A value of 1 turns on UTF-8 checking of file names.
A value of 0 turns it off.

utf8_validation

Enables checking of file names for the NFS V 4 client
and server to ensure that they conform to the UTF-8
specification.

A value of 1 turns on UTF-8 checking of file names.
A value of 0 turns it off.

nfs_v4_pdts

Sets the number of tables for memory pools used by
the biods for NFS V4 mounts.

You should use the vmstat -v command to look for
non-zero values in the client file system I/Os blocked
with no fsbuf field.

Increase the number until the blocked I/O count is no
longer incremented during workload. The number
might need to be increased in conjunction with
nfs_v4_vm_bufs.

nfs_v4_vm_bufs

Sets the number of initial free memory buffers used for
each NFS V4 paging device table (pdt) created after
the first table. The very first pdt has a set value of 256,

Important: Extreme care must be taken before values are changed using the
nsfo command. An incorrect change can render the system unusable.
 Appendix C. AIX 5.3 NFS quick reference 295

512, 640, or 1000, depending on system memory. This
initial value is also the default value of each newly
created pdt.

You should use the vmstat -v command to look for
non-zero values in the client file system I/Os blocked
with no fsbuf field.

The nfs_v4_vm_bufs option must be set prior to
nfs_v4_pdts.

Useful examples how the nfso command can be used:

1. To print, in colon-delimited format, a list of all tunable parameters and their
current values, run:

nfso -a -c

2. To list the current and reboot value, range, unit, type, and dependencies of all
tunable parameters managed by the nfso command, run:

nfso -L

3. To list the reboot values for all Network File System tuning parameters, run:

nfso -r -a

4. To set a tunable parameter, for example utf8, to a value of 1, run:

nfso -o utf8=1

5. To set a tunable parameter, for example nfs_v4_pdts, to its default value of 1
at the next reboot,run:

nfso -r -d nfs_v4_pdts

The following references are also useful:

“Network File System (NFS) Overview for System Management” and “TCP/IP
Overview for System Management,” AIX 5L Version 5.3 System User’s Guide:
Communications and Networks, SC23-4909

“Monitoring and Tuning NFS Use,” AIX 5L Version 5.3 Performance Management
Guide, SC23-4905

To view these documents, choose System management guides in the left
navigation bar at:

http://publib.boulder.ibm.com/infocenter/pseries/index.jsp?topic=/com.ibm.aix.d
oc/cmds/aixcmds6/ypserv.htm
296 Securing NFS in AIX

http://publib.boulder.ibm.com/infocenter/pseries/index.jsp?topic=/com.ibm.aix.doc/cmds/aixcmds6/ypserv.htm

acronyms
ACE Access Control Entry

ACL access control list

AFS Andrew file system

AIO asynchronous input/output

ASCII American Standard Code for
Information Interchange

DCE Distributed Computing
Environment

DES Data Encryption Standard

DFS Distributed File System

DNS Domain Name Service

EIM Enterprise Identity Mapping

FS file system

GID group ID

GPFS General Parallel File System

GSS-API Generic Security Service
Application Programming
Interface

GUI graphical user interface

IBM International Business
Machines Corporation

IEEE Institute of Electrical and
Electronics Engineers

IETF Internet Engineering Task
Force

IP Internet Protocol

ISO International Organization for
Standardization

ITSO International Technical
Support Organization

JFS journaled file system

JFS2 enhanced JFS

KDC key distribution center

KRB5 Kerberos version 5

Abbreviations and
© Copyright IBM Corp. 2004. All rights reserved.
LDAP Lightweight Directory Access
Protocol

LDIF LDAP Data Interchange
Format

LIPKEY Low Infrastructure Public Key

NAS Network Authentication
Service

NFS Network File System

NFS V2 NFS Version 2

NFS V3 NFS Version 3

NFS V4 NFS Version 4

NIM Network Installation
Management

NIS Network Information Service

NLM Network Lock Manager

NTP Network Time Protocol

OSI open systems interconnection

POSIX Portable Operating System
Interface

RFC Request For Comments

RFS (AT&T) Remote File System

RPC remote procedure call

SMIT System Management
Interface Tool

SPKM Simple Public-Key
Mechanism

SSL Secure Sockets Layer

TCP Transmission Control Protocol

UDP User Datagram Protocol

UID User ID

UTF Unicode Transformation
Format

XDR External Data Representation
 297

298 Securing NFS in AIX

Glossary

ACE. (Access Control Entry) One of the entries in
an Access Control List (ACL).

ACL. (Access Control List) A list of permission
entries that control user and group access to an
object.

Authentication. Security method used to confirm
the identity of a system user, host, or service.

Authorization. Security method used to control
what shared information each system user or client
machine can access.

GID. (Group Identifier) Number used to identify a
UNIX group.

Identification. Security method used to uniquely
establish the identity of information system users,
hosts, and services.

Integrated login. System login configured to
obtain user authentication and identification
(optional) from an external source, such as
Kerberos/LDAP.

KDC. (Key Distribution Center) The trusted
third-party or intermediary in Kerberos that issues all
the Kerberos tickets to the clients.

Kerberos realm. Comprises a set of managed
hosts that share the same Kerberos database.

NFS client. A host that accesses, via a mount, one
or more directories from an NFS server.

NFS domain. A name that identifies an operating
context for NFS servers and clients. It is implied that
systems that share the same NFS domain also
share the same user and group registries.

NFS export. The operation that makes a directory
on an NFS server available for access by NFS
clients.
© Copyright IBM Corp. 2004. All rights reserved.
GSS-API. Generic Security Services Application
Programming Interface. A generic API for doing
client-server authentication.

NFS mount. The operation that maps an exported
directory from an NFS server into a client’s directory
structure, making it appear as if the served directory
is local on the client.

NFS server. A host that makes available for NFS
access one or more of its directories.

NFS. (Network File System) A protocol for sharing
files over a computer network.

Opaque. Used in conjunction with bytes, data
structures, tokens, and so on, to represent a
collection of bytes whose internal structure is
unknown at the time but will be interpreted later on
in a processing sequence.

Pseudo-file system. The portion of an NFS
server’s name space that is exported to NFS clients.

Pseudo-root. The top level of an NFS server’s
pseudo-file system. By default, it corresponds to the
root directory in the server’s file tree, but it can be
specified to be a lower-level directory, such as
/exports.

RPC. (Remote Procedure Call) A protocol whereby
one computer process (the client process) can direct
another process (the server process) to run a
procedure, appearing as if the client process had run
the procedure in its own address space. The client
and server processes are typically on two separate
computers, although they can both be on the same
computer.

RPCSEC_GSS. A security flavor that provides
authentication, integrity, and privacy protection for
remote procedure calls.
 299

UID. (User Identifier) Number used to identify a
UNIX user.

WSM. (Web-based System Manager) A
Web-based interface for administering an AIX
system.
300 Securing NFS in AIX

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this Redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 302. Note that some of the documents referenced here may be available
in softcopy only.

� AIX - Migrating NIS Maps into LDAP, TIPS0123

� AIX 4.3 Elements of Security, SG24-5962

� AIX 5L Version 5.2 Security Supplement, SG24-6066

� AIX 5L Differences Guide Version 5.3 Edition, SG24-7463

� Exploiting RS/6000 SP Security: Keeping It Safe, SG24-5521

� IBM IBM Eserver Certification Study Guide - AIX 5L Communications,
SG24-6186

� IBM IBM Eserver pSeries Sizing and Capacity Planning: A Practical Guide,
SG24-7071

� Introduction to the IBM Problem Determination Tools, SG24-6296

� RS/6000 SP System Management: Easy, Lean and Mean, GG24-2563

� Using LDAP for Directory Integration, SG24-6163

� Windows-based Single Signon and the EIM Framework on the IBM
IBM Eserver iSeries Server, SG24-6975

Other publications
These publications are also relevant as further information sources:

� AIX 5L Version 5.3 Commands Reference, Volume 1, SC23-4888

� AIX 5L Version 5.3 Commands Reference, Volume 2, SC23-4889

� AIX 5L Version 5.3 Commands Reference, Volume 4, SC23-4891

� AIX 5L Version 5.3 Files Reference, SC23-4895
© Copyright IBM Corp. 2004. All rights reserved. 301

� AIX 5L Version 5.3 Performance Management Guide, SC23-4905

� AIX 5L Version 5.3 Security Guide, SC23-4907

� AIX 5L Version 5.3 System Management Guide: Communications and
Networks, SC23-4909

� Garman, Kerberos: The Definitive Guide, O'Reilly, 2003, ISBN 0596004036

� Stern, et al., Managing NFS and NIS, 2nd Edition, O'Reilly, 2001, ISBN
1565925106

Online resources
These Web sites and URLs are also relevant as further information sources:

� NFS Version 4 Open Source Reference Implementation

http://www.citi.umich.edu/projects/nfsv4/linux/

� The NFS Version 4 Protocol, Brian Pawlowski, et al

http://www.nluug.nl/events/sane2000/papers/pawlowski.pdf

� NFS Version 3 Design and Implementation, Brian Pawlowski, et al

http://citeseer.ist.psu.edu/pawlowski94nfs.html

� IETF RFC page

http://www.ietf.org/rfc.html

� Other RFC references for NFS version 4

http://www.nfsv4.org/nfsv4techinfo.html

� NFS V4 Working Group

http://www.nfsv4.org/

� Open Systems Interconnection (OSI) Reference Model

http://ourworld.compuserve.com/homepages/timothydevans/osi.htm

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications, and additional materials, as well as order hard-copy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks
302 Securing NFS in AIX

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.citi.umich.edu/projects/nfsv4/linux/
http://www.nluug.nl/events/sane2000/papers/pawlowski.pdf
http://citeseer.ist.psu.edu/pawlowski94nfs.html
http://www.ietf.org/rfc.html
http://www.nfsv4.org/nfsv4techinfo.html
http://www.nfsv4.org/
http://ourworld.compuserve.com/homepages/timothydevans/osi.htm

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 303

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

304 Securing NFS in AIX

Index

Symbols
/etc/auto.master 177
/etc/bootparms 289
/etc/exports 37
/etc/exports file 88
/etc/filesystems 288
/etc/fstab (Linux) 177
/etc/group file 49
/etc/gssapi_mech.conf (Linux) 177
/etc/ibmslapd.conf 212
/etc/idmapd.conf (Linux) 177
/etc/init.d/portmap (Linux) 177
/etc/init.d/rpcgssd (Linux) 177
/etc/init.d/rpcidmapd (Linux) 177
/etc/inittab 137
/etc/krb5/krb5.conf 268
/etc/krb5/krb5.keytab 143
/etc/netgroup 289
/etc/networks 289
/etc/nfs.clean 126
/etc/nfs/hostkey 38, 288
/etc/nfs/local_domain 38, 288
/etc/nfs/princmap 288
/etc/nfs/princmap file 39
/etc/nfs/realm.map 39, 288
/etc/nfs/realm.map file 54
/etc/nfs/security_default 40, 288
/etc/passwd file 49
/etc/pcnfsd.conf 289
/etc/rc.nfs 288
/etc/rmtab 288
/etc/rpc 289
/etc/security/user 173
/etc/services 158
/etc/sm 288
/etc/sm.bak 288
/etc/state 288
/etc/syslog.conf 208
/etc/xtab 38
/usr/lib/security/methods.cfg 166
/var/krb5/log/krb5kdc.log 211
/var/ldap/db2cli.log 212
/var/ldap/ibmslapd.log 212
© Copyright IBM Corp. 2004. All rights reserved.
A
aclconvert command 73
acledit command 32, 73
aclget command 32, 73, 82
aclgettypes command 33, 73
aclput command 32, 73, 82
ACLs

AIXC ACLs
AIXC ACL and NFS V4 client 64

commands 73
NFS V4 ACLs

access evaluation 69
administration 72
chmod command and 77
directory structure and 79
file system support 65
format 65
inheritance 68
inheritance and move vs. copy 79
inheritance and umask 78
inheritance, maximizing benefits of 80
maintaining existing ACLs 82
NFS V3 clients and 87
permission bits 67
permission restrictions 69
permissions scenarios 85
special user permissions 69
UNIX permissions and 71

types
AIXC ACL 33, 62–63
NFS V4 ACL 32, 65

add_principal command 139
addprinc command 139
administration

sample scripts 256
aio 157
alias tree

configuration 131
setting up alias tree extension in NFS V4 131

attributes
mandatory attributes 21
named attributes 23
recommended attributes 21

authentication 46
 305

AUTH_SYS 47, 51, 59
example unsuccessful 281
host 88
Kerberos 53, 59
user 59

authentication grammar 166, 173
authorization 47

access control lists 62
exports 88
host 88
standard UNIX file permissions 63
user 62

automount command 44, 291

B
bootinfo command 156
bosboot command 157

C
chkconfig (Linux) command 181
chnfs command 43, 127
chnfsdom command 38, 43, 292
chnfsexp command 44, 291
chnfsim command 32, 43, 292
chnfsmnt command 44, 291
chnfsrtd command 39, 43, 146
chnfssec command 40, 43
chnfssim command 39
chsec command 174
chuser command 173
commands

/etc/nfs.clean 126
/etc/rc.nfs 127
aclconvert 73
acledit 32, 73
aclget 32, 73, 82
aclgettypes 33, 73
aclput 32, 73, 82
add_principal 139
addprinc 139
automount 44, 291
bootinfo 156
bosboot 157
chkconfig (Linux) 181
chmod 77
chnfs 43, 127
chnfsdom 38, 43, 292
chnfsexp 44, 291

chnfsim 32, 43, 292
chnfsmnt 44, 291
chnfsrtd 39, 43, 146
chnfssec 40, 43
chnfssim 39
chsec 174
chuser 173
config.krb5 137
db2iauto 162
db2set 162
errpt 211
exportfs 44, 88, 291

options 293
find 132
fsuser 210
get_principals 140
getprincs 140
ibmdirctl 162
id 154
installp 135
ipreport 210
iptrace 210
kadmin.local 139
kdestroy 149
kinit 138
klist 139
ktpass.exe (Windows) 195
ktutil 143
ldapcfg 162
ldapmodify 163
ldapsearch 164
lsattr 157
lsitab 137
lsnfsexp 44, 291
lsnfsmnt 44, 291
lsof 212
ls-secldapclntd 167
lssrc 128
lsuser 169
mkgroup 166
mkkrb5srv 136
mknfs 43, 291
mknfsexp 44, 291
mknfsmnt 44, 292
mkuser 166
mount 129, 291

options 294
nfs4cl 43, 132, 211, 292
nfshostkey 38, 43, 144, 292
306 Securing NFS in AIX

nfshostmap 39, 43
nfso 44, 291

options 294–295
nfsstat 44, 211
ps 166
refresh 209
rmnfs 44, 292
rmnfsexp 44, 292
rmnfsmnt 44
rpcgen 44
rpcinfo 44, 210
setclock 105
showmount 123, 211, 291
snap 263
startsrc 124
stopsrc 188
umount 123
uptime 153

config.krb5 command 137

D
db2iauto command 162
db2set command 162
diskless client 32
domain name 124

E
EIM

bos.eim.rte file set 57
Enterprise Identity Mapping

See EIM
errpt command 211
Ethereal 208, 210, 212–213
exportfs command 44, 88, 291

options 293
exports file 88
External Data Representation

See XDR
external name space (exname) 34

F
file handle 30

persistent 30
volatile 30

file locking
clientid 29
stateid 29

file sets
bos.eim.rte 57
db2_08_01.ldap 158
krb5.client 145
ldap.client.adt 158
ldap.client.rte 158
ldap.html.en_US.config 158
ldap.html.en_US.man 158
ldap.msg.en_US 158
ldap.server.cfg 158
ldap.server.com 158
ldap.server.java 158
ldap.server.rte 158
ldap.webdadmin 158
modcrypt.base 145

files
/etc/bootparms 43, 289
/etc/environment 41
/etc/exports 43, 88, 288
/etc/filesystems 42, 288
/etc/fstab (Linux) 177
/etc/group 49
/etc/gssapi_mech.conf (Linux) 177
/etc/ibmslapd.conf 212
/etc/idmapd.conf (Linux) 177
/etc/inittab 137
/etc/krb5/krb5.conf 137, 268–269
/etc/krb5/krb5.keytab 143
/etc/krb5/krb5_cfg_type 137
/etc/netgroup 289
/etc/networks 43, 289
/etc/nfs/hostkey 38, 42, 288
/etc/nfs/local_domain 38, 42, 288
/etc/nfs/princmap 39, 42, 288
/etc/nfs/realm.map 39, 42, 54, 288
/etc/nfs/security_default 40, 42, 288
/etc/passwd 49
/etc/pcnfsd.conf 43, 289
/etc/rc.nfs 288
/etc/rmtab 288
/etc/rpc 43, 289
/etc/security/user 173
/etc/services 158
/etc/sm 288
/etc/sm.bak 288
/etc/state 288
/etc/syslog.conf 208
/etc/xtab 38, 43, 288
/usr/lib/security/methods.cfg 166
 Index 307

/var/krb5/log/krb5kdc.log 211
/var/ldap/db2cli.log 212

find command 132
full client 147
fuser command 210

G
get_principals command 140
GID 48
group file 49
GSS-API 28

error codes 232
gssd daemon 144

I
IBM Tivoli Directory Server 49, 155, 160

configuration 160
ibmdirctl command 162
id command 154
identification 46

host 87
user/group 48

identity management
LDAP user registry 49
NIS user registry 49
UNIX user registry 49

identity mapping 50
AUTH_SYS 51
Kerberos 53
multiple NFS domains 57

installing the IBM NAS file sets 135
installp command 135
ipreport command 210
iptrace command 210

sample output 271

K
kadmin.local command 139
KDC

adding krbtgt service principal 200
creating server principals 141
creating user principals 139
encryption types 107
testing basic functions 135, 138
with LDAP backend 165

kdestroy command 149
Kerberos

configuration file changes on KDC server 203
cross-realm access 199
database 60
description 59
host identification 88
machine principal 88
mapping realm to NFS domain 54
MIT Athena project 244
need for 103
NFS client considerations 108
NFS use of 60
other information sources 252
principal 106
realms 105
service principal 88
status codes 234
symmetric encryption 245
third-party authentication described 244
ticket lifetime 60
ticket-granting service 246
tickets 59
user authentication 101
user principal 53

Kerberos definitions
authentication database 251
instance 251
KDC 252
key 251
principal 251
realm 251
ticket 251
ticket-granting ticket 252

Kerberos overview 243
Kerberos V5 (KRB5) 28
KerberosV5 (KRB5)

Key Distribution Center (KDC) 28
Key Distribution Center

See KDC
keytab

create NFS server entry 142
krb5.keytab file 143

kinit command 138, 246
klist command 139
krbtgt service principal 200
ktpass.exe (Windows) command 195
ktutil command 143
308 Securing NFS in AIX

L
LDAP user registry 49
ldapcfg command 162
ldapmodify command 163
ldapsearch command 164
LDIF

sample file 270
Linux client

pseudo-file system in NFS V4 187
Read/Write NFS V4 mounts 185
Read-only NFS V4 mount 182

lsattr command 157
lsitab command 137
lsnfsexp command 44, 291
lsnfsmnt command 44, 291
lsof command 212

M
mknfs command 43, 291
mknfsexp command 44, 291
mknfsmnt command 44, 292
mount command 291

options 294
multi-homed server 105

N
namespace 25

pseudo-file system 27
NAS

configuration 134
installing IBM NAS file sets 135
path variable 121
set up with legacy database 134

Network File System
See NFS

Network Installation Management
See NIM

Network Time Protocol
See NTP

NFS 4
definition 3
NFS V3 (NFS Version 3) 17

NFS daemons 14
/usr/bin/gssd 290
/usr/sbin/biod 290
/usr/sbin/nfsd 290
/usr/sbin/nfsrgyd 290
/usr/sbin/pcnfsd 290

/usr/sbin/portmap 290
/usr/sbin/rpc.lockd 290
/usr/sbin/rpc.mountd 290
/usr/sbin/rpc.statd 290
biod 17, 42
gssd 41, 61
NFS Lock Manager (NLM) 19
nfsd 16
nfsrgyd 41
portmap 15, 42
rpc.lockd 16, 41
rpc.mountd 16, 42
rpc.pcnfsd 42
rpc.rstatd 42
rpc.statd 16, 41

NFS domain
choosing your NFS domain 98
configuration 146
multiple NFS domains 57
single NFS domain 51

NFS domain name 124
NFS registry daemon 143
NFS V4

ACLs 65
AIXC ACL and NFS V4 client 64
alias tree extension 131
authentication methods 102
client with integrated login services 170
exports options 89
full client 108
general deployment strategy 95
host authentication 88
host authorization 88
host identification 87
identity mapping 24
implementation 119
integrating with Linux client 176
Linux client 170
mandatory attributes 21
named attributes 23
nobody, mapping unknown users to 57
pseudo root FS 124
recommended attributes 21
security context 60
setting up client with NAS 145
slim client 108
slim client versus full client 108
syslogd settings 121
unknown user 57
 Index 309

user authentication 59
user authorization 62
user/group identification 50
with Windows KDC 190

NFS V4 (NFS version 4) 20
NFS_NOBODY 41
NFS_PORT_RANGE 41
nfs4cl command 43, 211, 292
nfshostkey command 38, 43, 292
nfshostmap command 39, 43
nfso command 44, 291

options 294–295
nfsstat command 44, 211
NIM 32
NIS user registry 49
NTP

P
passwd file 49
princmap file 39
pseudo-file system 27

advantages 128
configuration 125
pseudo root FS 124

R
realm.map file 54
Redbooks Web site 302

contact us xv
refresh command 209
Remote Procedure Call

See RPC)
RFC

RFC2078 7
RFC2307 7, 170
RFC3010 5
RFC3530 5

rmnfs command 44, 292
rmnfsexp command 44, 292
RPC

security flavors 47
rpcgen command 44
rpcinfo command 44, 210
RPCSEC_GSS 47

authentication flow 61
configuration 154
configuring on clients 154
Kerberos 47

LIPKEY 47
protection levels

authentication 47
integrity 47
privacy 47

security context 60

S
scripts

change pseudo-root FS 256
copy ACLs 260
create full client (LDAP) 259
create full client (legacy db) 258
create KDC server 256
nfs_pd script 263

sec= exports option 89
security

AUTH_SYS 51
flavors 107
Kerberos 28, 53
krb5 107
krb5i 107
krb5p 107
LIPKEY 28
RPC flavors 47

security categories 46
security components

authentication 46
authorization 47
identification 46

service ticket 59
showmount command 211, 291
slim client 150, 152
slim client for cloning 150
slim client installation steps 150
slim client verification 153
snap command 263
stateful 13
stateless 13
Symbols

/etc/exports 288
/etc/krb5/krb5.conf 269
/etc/syslog.conf 122
/etc/xtab 288
/var/krb5/log/kadmin.log 211
NFS_NOBODY 41
NFS_PORT_RANGE 41

syslogd 121
310 Securing NFS in AIX

T
ticket-granting ticket 59
time synchronization 104

NTP 104
setclock 105
timed 104

troubleshooting 207
EIM not configured 213
exporting file systems 215
GSS-API error codes 232
IBM Tivoli Directory Server 212
Kerberos status codes 234
mount problems 218
NAS 211
realm is already mapped to domain 214
tools 208
using errpt command 211
using Ethereal 212
using fuser command 210
using iptrace and ipreport 210
using lsof command 212
using nfs4cl command 211
using nfsstat command 211
using rpcinfo command 210
using showmount command 210
using syslogd 208

U
UID 48
UNIX user registry 49
unmounting exported NFS V4 file system 123
user registries

NIS 49
UTF-8 30–31

V
vers=exports option 89

W
Web-based Systems Manager 73

ACL administration 73
Windows KDC 190

X
XDR
 Index 311

312 Securing NFS in AIX

(0.5” spine)
0.475”<->

0.875”
250 <->

 459 pages

Securing NFS in AIX
An Introduction to NFS V4 in AIX 5L

®

SG24-7204-00 ISBN 0738490806

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Securing NFS in AIX
An Introduction to NFS V4 in AIX 5L
Version 5.3

NFS Version 4 (NFS V4) is the latest defined client-to-server
protocol for NFS. A significant upgrade from NFS V3, it was
defined under the IETF framework by many contributors. NFS
V4 introduces a major changes to the way NFS has been
implemented and used up until now, including stronger
security, wide area network sharing, and broader platform
adaptability.

This IBM Redbook is intended to provide a broad
understanding of NFS V4 and specific AIX NFS V4
implementation details. It discusses considerations for
deployment of NFS V4, with a focus on exploiting the stronger
security features of the new protocol.

In the initial implementation of NFS V4 in AIX 5.3, the most
important functional differences are related to security.
Chapter 3 and parts of the planning and implementation
chapters in Part 2 cover this topic in detail.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Acknowledgements
	Become a published author
	Comments welcome

	Part 1 NFS V4 fundamentals
	Chapter 1. NFS Version 4 overview
	1.1 What is NFS?
	1.2 NFS V2 and NFS V3 History
	1.3 NFS V4 design motivations
	1.4 Objectives of NFS V4 (RFC3530)
	1.5 AIX 5.3 specific implementation of NFS V4
	1.5.1 Mandatory features
	1.5.2 Optional features

	1.6 Planning and implementation considerations
	1.6.1 Pre-implementation design considerations

	1.7 Looking ahead to the rest of the book

	Chapter 2. What’s new in NFS V4?
	2.1 How NFS works
	2.2 Protocols used by NFS
	2.2.1 UDP or TCP
	2.2.2 Remote Procedure Call (RPC)
	2.2.3 eXternal Data Representation (XDR)

	2.3 NFS daemons
	2.3.1 The portmap daemon
	2.3.2 The rpc.mountd daemon
	2.3.3 The rpc.statd daemon
	2.3.4 The rpc.lockd daemon
	2.3.5 The nfsd daemon
	2.3.6 The block I/O daemon (biod)

	2.4 NFS V3
	2.5 The NFS Lock Manager protocol
	2.6 NFS V4
	2.6.1 Attribute classes
	2.6.2 Username to UID mapping
	2.6.3 Better namespace handling
	2.6.4 Built-in security
	2.6.5 Client-side caching and delegation
	2.6.6 Compound RPC procedures
	2.6.7 File locking
	2.6.8 Internationalization
	2.6.9 Volatile file handles

	2.7 AIX 5L v5.3 implementation of NFS V4
	2.8 NFS V4 supported features in AIX 5.3
	2.8.1 Mandatory feature support
	2.8.2 Other unsupported features
	2.8.3 Optional feature support
	2.8.4 NFS4 ACL
	2.8.5 AIXC ACLs
	2.8.6 External name space (exname)
	2.8.7 Protocol differences: server exporting and client mounting
	2.8.8 NFS files
	2.8.9 Restricting NFS port ranges
	2.8.10 Use of NFS_NOBODY

	2.9 NFS daemons, files, and commands: a quick reference

	Chapter 3. Enhanced security in NFS V4
	3.1 General security concepts and terminology
	3.1.1 Broad security categories
	3.1.2 Information security components
	3.1.3 RPC security flavors
	3.1.4 RPCSEC_GSS protection levels
	3.1.5 RPCSEC_GSS protection mechanisms
	3.1.6 Looking ahead to the rest of the chapter

	3.2 NFS V4 user/group identification
	3.2.1 User identity management options
	3.2.2 User/group identities and NFS V4

	3.3 NFS V4 user authentication
	3.3.1 AUTH_SYS user authentication
	3.3.2 RPCSEC_GSS user authentication using Kerberos

	3.4 NFS V4 user authorization
	3.4.1 Standard UNIX file permissions
	3.4.2 AIXC ACLs
	3.4.3 NFS V4 ACLs: description
	3.4.4 NFS V4 ACLs: ACL evaluation
	3.4.5 NFS V4 ACLs: administration
	3.4.6 NFS V4 ACLs: permissions scenarios
	3.4.7 NFS V4 ACLs: NFS V3 clients

	3.5 NFS V4 host identification
	3.5.1 Basic host identification
	3.5.2 Kerberos host identification

	3.6 NFS V4 host authentication
	3.7 NFS V4 host authorization

	Part 2 Implementing NFS V4
	Chapter 4. Planning for NFS V4
	4.1 Deployment of NFS V4 in general
	4.2 Mandatory requirements
	4.2.1 What is your name resolution type?
	4.2.2 Choosing your NFS domain

	4.3 Identification methods
	4.3.1 Selecting the user/group repository
	4.3.2 Other identification considerations

	4.4 NFS Authentication methods
	4.4.1 AUTH_SYS method
	4.4.2 Deploying Kerberos
	4.4.3 Default types of encryption for KDC and security flavors
	4.4.4 NFS client considerations when using Kerberos
	4.4.5 Deployment of LDAP

	4.5 Authorization methods
	4.5.1 Choosing your user authorization method
	4.5.2 Other user authorization considerations

	4.6 Choosing the appropriate file system types
	4.7 NFS protocols and namespace considerations
	4.7.1 Pseudo-root FS - alias tree versus classic model

	4.8 Sizing and capacity planning considerations
	4.9 Migration considerations

	Chapter 5. Sample implementation scenarios
	5.1 Setup of the sample environment
	5.1.1 PATH variable for NAS deployment
	5.1.2 syslogd settings

	5.2 Using NFS V4 as you did with NFS V3
	5.3 How to unmount an exported NFS V4 file system
	5.4 Setting up the NFS domain name
	5.5 The pseudo-root FS
	5.5.1 Setting up the pseudo-root FS on an NFS V4 server
	5.5.2 Advantages of using the NFS V4 pseudo-root
	5.5.3 Setting up the alias tree extension on an NFS V4 server

	5.6 Setting up the NAS with a legacy database
	5.6.1 Setup of a KDC server
	5.6.2 Installing the IBM NAS file sets
	5.6.3 Initial basic KDC functions test
	5.6.4 Create user principals on the KDC server
	5.6.5 Create the NFS server principals on the KDC server

	5.7 Setting up an NFS V4 server with NAS on a different KDC server
	5.7.1 Create the NFS server keytab file entry
	5.7.2 Check the NFS V4 server before client access
	5.7.3 Set up the NFS registry daemon
	5.7.4 Set up the gssd daemon on the NFS V4 server

	5.8 Setting up an NFS V4 client with NAS
	5.8.1 General steps for all types of clients
	5.8.2 Install the NAS client code
	5.8.3 Set up the NFS domain
	5.8.4 Set up the NFS domain-to-realm map
	5.8.5 Full client installation steps
	5.8.6 Slim client installation steps
	5.8.7 Configuring RPCSEC_GSS on the clients

	5.9 Preparing the system for Tivoli Directory Server and Kerberos V5
	5.9.1 Set up procedure
	5.9.2 Configure IBM Tivoli Directory Server
	5.9.3 Configure the KDC server with LDAP backend
	5.9.4 Configure the NFS V4 client for integrated login services

	5.10 Integrating NFS V4 with a Linux client
	5.10.1 NFS server and client setup
	5.10.2 Read-only NFS V4 mount
	5.10.3 Read/write NFS V4 mounts on Linux
	5.10.4 Pseudo-file system in NFS V4 Linux client

	5.11 Windows KDC and NFS V4 AIX 5.3
	5.12 Setting up Kerberos cross-realm access
	5.12.1 Add the krbtgt service principal to every KDC server
	5.12.2 Kerberos configuration file changes on the KDC server, NFS V4 client and server
	5.12.3 Add NFS domain-to-realm map on NFS V4 client and server
	5.12.4 Client access verification
	5.12.5 Client access mount using cross-realms

	Chapter 6. Problem determination
	6.1 Problem determination tools and techniques
	6.2 AIX problem determination tools and aids for NFS
	6.2.1 Enabling syslogd
	6.2.2 Using iptrace and ipreport
	6.2.3 Using the fuser command
	6.2.4 Using the rpcinfo command
	6.2.5 Using the showmount command
	6.2.6 Using the nfs4cl command
	6.2.7 Using the nfsstat command
	6.2.8 Using the errpt command

	6.3 IBM NAS problem determination tools
	6.4 Tivoli Directory Server problem determination tools
	6.5 Third-party problem determination tools
	6.5.1 Using the lsof command
	6.5.2 Using the Ethereal utility

	6.6 General NFS V4 problems
	6.6.1 Warning: EIM is not configured
	6.6.2 Realm is already mapped to domain

	6.7 Exporting file systems
	6.7.1 Exportfs: cannot change the v4 root...
	6.7.2 Exportfs: /<path>: Invalid argument
	6.7.3 Exportfs: /var/<logfile>: Too many levels of symbolic links...

	6.8 Mount problems
	6.8.1 General mount problem
	6.8.2 Pseudo-root and nfs4cl problems
	6.8.3 ‘vers’ mount option error: “...Program not registered”
	6.8.4 ‘vers’ mount option error: “...server <name> not responding”
	6.8.5 Mount command hangs - no system response
	6.8.6 Mount with sec=krb5: “vmount: The file access permissions do not allow the specified action”
	6.8.7 Mount with sec=krb5: “RPC: 1832-016 Unknown host...”
	6.8.8 File and directory access: cd, ls, etc. return “permission denied”
	6.8.9 File and directory access: file ownership is “nobody:nobody”
	6.8.10 NAS problem: kadmin: “Unable to initialize kadmin interface”

	6.9 GSS-API error codes
	6.9.1 Major GSS-API error codes
	6.9.2 Kerberos v5 status codes

	Part 3 Appendixes
	Appendix A. Kerberos
	Overview
	Kerberos keys and initial setup
	Authenticating to the Kerberos server
	Authenticating to an application server
	Kerberos terminology
	Where to find more information about Kerberos
	IBM Redbooks
	Other IBM publications
	Non-IBM publications
	Other information sources

	Appendix B. Sample scripts, files, and output
	Sample administrative scripts
	Change the pseudo-root FS sample script
	Create a KDC server with NFS V4 server
	Create a full client with legacy KDC server backend
	Create a Full Client with KDC and LDAP backend
	Script to copy ACLs to an entire directory structure
	Windows command script to run ktpass
	Script to gather additional information for local AIX software support

	Sample client Kerberos configuration files
	Kerberos configuration file /etc/krb5/krb5.conf with legacy backend
	Kerberos configuration file /etc/krb5/krb5.conf with LDAP backend
	Kerberos configuration file /etc/krb5/krb5.conf with Windows Active Directory backend
	LDIF sample file for KDC

	Sample iptrace output
	Successful authentication during mount request
	Unsuccessful authentication during mount request

	Appendix C. AIX 5.3 NFS quick reference
	NFS configuration files
	NFS daemons
	NFS commands
	Export options
	mount command options
	nfso command options

	Abbreviations and acronyms
	Glossary
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

